
Ltd

®

Document Release: October 26, 2004

Produced by

The Solarbotics SUMOVORE
Atmel ATmega8 Version 1 Brainboard Add-on

This brainboard uses the popular and powerful Atmel
ATmega8 microcontroller (included!) to take over the
functions of the Discrete Brain that comes with your
Sumovore.

There are many programming languages (some free!)
you can use to program your Brainboard via your
computer’s parallel port or Atmel STK-500
development system.

It’s fast, inexpensive, and very powerful. An ideal
mate to the Sumovore!

(Sumovore Sumo robot kit and DB25 printer cable/connector req’d)

We strongly suggest you inventory the parts in your kit to make
sure you have all the parts listed. Use a pen, pencil, pricked finger,
chocolate bar - anything to mark off the items. If anything is
missing, contact us for replacement parts information.

Disclaimer of Liability
Solarbotics Ltd. is not responsible for any special, incidental, or
consequential damages resulting from any breach of warranty, or
under any legal theory, including lost profits, downtime, good-will,
damage to or replacement of equipment or property, and any costs
or recovering of any material or goods associated with the assembly
or use of this product. Solarbotics Ltd. reserves the right to make
substitutions and changes to this product without prior notice.
(Sorry, gotta make the lawyer happy)

(ii)

ATmega8 Brainboard Components
1 - Printed Circuit Board (PCB)
1 - 0.1µF capacitor (labled ‘104’)
2 - Diodes
5 - Tiny LEDs
1 - Programming indication LED
2 - 2N2222 NPN Transistors
4 - 240 Ohm Resistors (Red/Yellow/Brown)
6 - 1k Resistors (Brown/Black/Red)
6 - 10k Resistors (Brown/Black/Orange)
1 - 100k Resistor (Brown/Black/Yellow)
1 - ATmega8 28 pin Carrier
1 - Atmel ATmega8 (or 8L) Microcontroller
1 - SPST Push Button Switch
1 - 5-Socket programming header
1 - 6-Pin (2 rows of 3 pins) STK-500 programming header
1 - 5-Pin Header (for building optional programming cable)
2 - 4-Pin Sumovore interface long headers
2 - 8-Pin Sumovore interface long headers
3 - 3-Pin Headers (for optional servo headers)
1 - QRD1114 edge sensor (for Sumovore’s middle sensor)

Tools Required
Soldering equipment
Side-cutters or fine snips
Computer for profurther programming

The ATmega8 Brainboard
Parts List

2x3 header

5 socket header

2N2222

0.1µF
capacitor

LED

Tiny LEDs

3-pin
headers

ATmega8
with carrier Long 4-pin

headers

Long 8-pin
headers

240 ohm
resistors

1kOhm
resistors

Diodes

100kOhm resistor

10kOhm
resistors

Reset
switch

5-pin
programming
header

QRD1114

Looking for a more flexibility out of your Sumovore? Well, welcome to the
next in our series of brainboards - the ATmega8. The ATmega 8 offers an
impressive list of features, including (but not limited to):
!8kB flash memory
!Three Pulse-width modulation (PWM) channels
!Six Analog-to-digital converters (ADCs)
!In-circuit programmable (which we make use of)
!Internal RC oscillator (a resonator is needed to surpass 8MHz)
!23 programmable Input/Output (I/O) lines
!Single clock execution up to 1MIPs/MHz (this means “it’s QUICK”, like
250 times faster than a standard Basic Stamp 2!)

We’ve made good use of the capabilities of the ATmega8, but there’s lots
more you can do with it, including program it with the free open-source
GCC C-compiler (our weapon of choice) or other compilers for BASIC,
JAL, Java, Assembler, Pascal, Forth,... it goes on and on!

This is not a kit for a microcontroller beginner. Anybody using this
brainboard should have the appropriate skills, or be ready to learn the
techniques that make a microcontroller... microcontrol!

This kit lets you swap out the default discrete brainboard for a
programmable version. If you run into any problems, it’s a simple process
to swap a different brain back in. Didn’t you ever have days where that’d be
a handy feature for you to have (umm...for the robot, we mean).

This kit features:
! Atmel ATmega8 (or 8L) microcontroller
! 5 indicator LEDs
! 1 “Programming-in-progress” indicator LED
! STK500 and 5-pin programming headers
! Three servo (or similar peripheral) headers
! Extra breadboarding space and hard-point mounts
! Microprocessor Reset Switch

We designed the breadboarding space to accommodate extra ICs and
support electronics, or simply as a place to mount a servo with double-
sided sticky tape! It’s a flexible area - use it for whatever strikes your fancy.

Introduction
The ATmega8 Brainboard

Step 1 - 100kOhm Resistor (Brown / Black / Yellow): Bend the leads of the
100k resistor over and insert it position ‘R1’. This resistor is part of the
programming LED indicator circuit.

Building It - Steps 1, 2, 3
The ATmega8 Brainboard

Step 1:
100k resistor
(just one)

Step 2 - 240 Ohm Resistors (Red / Yellow / Brown): These resistors get
installed as a group in positions ‘R2’, ‘R3’, ‘R4’, and ‘R5’. These are parallel port
programming protection resistors.

Step 2:
240 Ohm
resistors (x 4)

Step 3 - 1kOhm Resistors (Brown / Black / Red): These 6 resistors are installed
in positions ‘R6’, ‘R7’, ‘R8’, ‘R9’, ‘R10’ and ‘R17’. The first set of 5 limit the
current going to the tiny LEDs (yet
to be installed). The resistor at
‘R17’ controls power to the servo
headers (’S1’ to ‘S3’).

Step 3:
1.0k resistors
(x 6)

Building It - Steps 4, 5, 6, 7

Step 4 - 10k Resistors (Brown / Black / Orange): Bend and install the 10k
resistors into positions ‘R11’, ‘R12’, ‘R13’, ‘R14’, ‘R15’, and ‘R16’. R11 is the
reset pull-up, while the rest are the front edge detector sensor pull-ups.

The ATmega8 Brainboard

Step 4:
10k resistor
(x 6)

Step 5, 6, & 7 - Diodes, Capacitor, and Transistors: Bend and install the two
diodes into positions ‘D1’ and ‘D2’, but make sure it goes in the right way! The
band on the diode must match the position of the band on the PCB. The 0.47µF

capacitor (labeled ‘474’) is
installed at position ‘C1’, and the
two transistors are installed at
‘Q1’ and ‘Q2’. Make sure the
curve of the transistor matches the
one printed on the PCB!

Step 5: Diodes (x 6)
Make sure the diode goes in
with the bar on the right!

Step 6: 0.47µF
capacitor

Step 7: 2N2222
transistors (x 2)

Step 8, 9, & 10- Regular and Tiny LEDs; Reset Switch: Everybody likes LEDs.
They let you know when the microcontroller is being programmed and when
sensors are sensing! Just make sure you put them in the correct way at locations
‘L1’ through ‘L5’, and ‘LED6’ (backwards doesn’t work). The reset switch is
mounted at position ‘SWT1’.

Building It - Steps 8, 9, 10, 11
The ATmega8 Brainboard

Step 8:
Programming
indicator LED

Note flat spot
on side

Note polarity
stripe! It goes
to square pad!

Step 9:
Tiny indicator LEDs

Step 11 - 28-pin Atmel Carrier: We use a carrier to protect the microcontroller
from any strange funkiness going on
while assembling the PCB. We’ll put
the chip in later.

Although not critical, try to put the
carrier in place with the notch on
the right side so it matches the
shape on the PCB.

Step 11:
Chip carrier

Note notch
position

Step 10:
Reset switch

Building It - Step 12, 13, 14
The ATmega8 Brainboard

Step 12, 13 - Programming Headers: You’ll most likely be using the 5-pin
header for most of your programming with a modified parallel port cable. Simply
solder the header to position ‘P5’. If you have an Atmel STK-500 development
board, you can install the optional 2x3 pin header to the position ‘STK500’ on
the right side of the board as well.

Step 12:
5-position
programming
header

Step 13 (optional):
Got an STK500?
Install the 2x3 pin
header here (long pin
ends sticking up)

Step 14 - Servo / Auxiliary Headers: You most likely not need these headers
unless if you’re planning some funky
modifications, but then again, that’s
why they’re here! Solder the 3-pin
headers to positions ‘S1’, ‘S2’, and
‘S3’. You’ll notice that there’s power,
ground, and a signal line all available to
you on this header, so you can read
sensors, drive servos, or... or... make
poached eggs on toast if you have the
necessary hardware! Have fun with
these headers!

Step 14:
3-pin servo or auxiliary
interface pins

Building It - Step 15, 16
The ATmega8 Brainboard

Step 15 & 16 - 4 and 8-pin strips: Gotta have a way to plug your ATmega8
brainboard into the Sumovore, right? Install these pins on the underside of the
PCB, soldering only one pin per strip initially. This lets you eyeball and adjust them
so they’re straight up-and-down, which is important so they can mate with the
sockets on the Sumovore.

Install all pin headers on
UNDERSIDE of Brainboard!

Step 15:
4-pin strips

Step 16:
4-pin strips

Pin strip installed crooked -
good thing you soldered only one
pin!

Remelt solder on top pin, and
re-adjust pins so they sit
properly, then solder the rest
of the pins

Competed pin stip installation on underside of PCB

Step 17
The ATmega8 Brainboard

Step 17 Installing the ATmega8:
out of the static-protection foam and insert it into the chip carrier. Make sure
that the notch on the chip is to the right, matching the notch in the carrier
and (more importantly) the notch printed on the circuit board.

 Now you’re ready to take the Atmel Mega8L

Important!
Notchs must
be on right
side!

Step 17: Install the microcontroller
Note: You may find it easier to insert
the chip into the holder after gently
bending all the pins inwards.

Finished ATmega8 Brainboard, with all the options in place. Ready
to start programming?

(do for each side)

Starts like
this...

...ends like
this!

Step 18, Brainboard options
The ATmega8 Brainboard

Step 18 - Installing the 5th line sensor:
your Sumovore, and install the included line sensor in position ‘Edge3’, just like
you did when you originally built your Sumovore. You don’t have to do this, but
if you want to make the best use out of your Brainboard, it’d be a good idea!

 Yank the edge-sensor board out of

Step 18: Add the 5th
line sensor

You will notice that on the Brainboard there’s a spot labeled ‘Xtal’, which is only
needed if you want to use an external resonator for greater timing accuracy.

Additionally, the pin for port C5 wasn’t directly used on any Sumovore pins, so
it is available as pad ‘PC5’ right next to the ‘P4’ quad-pin set on the right side of
the Brainboard

You may also notice at the bottom right corner a pair of pads labeled ‘TP1’. Test
Point 1 is for monitoring the
unregulated voltage from the
bottom four AA batteries. This is
so you can access a full 6V straight
from the batteries if required for
your modifications.

When using the bread-
boarding space,
remember that all square
pads are connected to
ground!

Optional
External
resonator

Spare
PC5 pin
pad

TP1 for
unreg’d
6V

The Programming Cable & Programming Introduction
The ATmega8 Brainboard

Unless if you’re using an Atmel STK-500 development board, you’ll be
programming your ATmega8 Brainboard via your computer’s parallel port. With
the abundance of USB printers on the market now, it shouldn’t take you much
effort to find an old printer cable to hack into a programming cable. We’ve even
included a 5-pin header for the brainboard side of the cable!

We’re using what’s called an SP12 serial programmer, released under the GNU
license by Ken Huntington, Kevin Towers, and Pitronics. We’ve combined some
of the parts (the resistors, transistor, LED) into the brainboard to make building
the cable a simple project. If you want to learn more about the SP12 project, you
can find it on the Internet at http://www.xs4all.nl/~sbolt/e-spider_prog.html.

Completed cable, with heatshrink sleeve and
scrap plastic 5-pin header support

13 1

14
25

Front of DB25 connector (looking at pins)

Programming
header

M
IS

O

M
O

S
I

S
C

K

R
E
S

E
T

G
N

D

SP12 Physical Wiring Diagram

23911

If you have Internet access, you should visit http://www.avrfreaks.net for as much
Atmel AVR microprocessor information as you’ll ever need - they even have a
“newbie” section for absolute beginners! AVRFreaks hosts or links to practically
all resources relating to the Atmel series of microcontrollers, so if the
Solarbotics downloads page doesn’t have what you need, try here.

Remember, there’s a good many ways to program your ATmega8. We’re going to
show you our method of using WinAVR with GCC (GNU C Compiler) as a
baseline (get the lastest software from http://winavr.sourceforge.net/).

Don’t let this stop you from trying Assembler, or even some of the
demonstration versions of other languages - have fun experimenting!

Default Program Listing (”sumoline.c”)
The ATmega8 Brainboard

/**
 Author: Grant McKee, Solarbotics Ltd. (C) 2004
 Date: Apr 2004
 Software: AVR-GCC 3.3.1
 Hardware: ATMEGA8L at 1 Mhz int OSC

Description:
Minisumo/Linefollower program Ver 1.0

If outside edge sensors see black during startup the program will branch to sumo.
If outside edge sensors see white during startup the program will branch to Linefollower.

Sumo mode is fairly basic:

- Wait 5 seconds before moving
- After 5 seconds go straight forward
- If a white line is detected on outside Left sensor

* Reverse both motors briefly
* Stop left motor
* Reverse Right motor
* After set time continue straight forward

- If a white line is detected on outside Right sensor
* Reverse both motors briefly
* Stop Right motor
* Reverse Left motor
* After set time continue straight forward

- If opponent detected on right Side
* Stop Right motor

- If opponent detected on Left Side
* Stop Left motor

- If both sensors detect opponent
* Turn on both motors forward

Linefollower mode:

- Start immediately
- If center sensor sees black all is well- go straight forward
- If center right sensor sees black, make a gentle right turn by slowing down right motor
- If center left sensor sees black, make a gentle left turn by slowing down left motor
- If far right sensor sees black, make a very sharp right turn by reversing right motor
- If far left sensor sees black, make a very sharp left turn by reversing left motor

- If all is white, all is lost - go looking for the line!

***/

#include <avr/io.h>

int value,left,mleft,middle,mright,right,channel,IRin; //Defined variables
long x,z; //Variables for delay timers

int ADCIN(int channel); //Function prototype for ADC function

#define thresh 128 //White line sensitivity higher is more sensitive (255 max)
#define start_time 150000 //Startup delay time constant 150000 ~ 1 sec (at clk = 1Mhz)
#define reverse_time 60000 //Time to reverse

int main(void) //Start of main
{
outp(0xFC, DDRD); //set 5 LED's on port D as outputs
outp(0xFF, DDRB); //set outputs to motor enables/direction

/**************************** Line sensor switch **********************/
left = ADCIN(0); //Read Left line sensor
right = ADCIN(4); //Read Right line sensor

/****************** Startup routine (am I Sumo or Linefollower) ********/
if ((right < thresh) & (left < thresh)) //If both left and right sensors see white

{
LINEFOLLOWER(); //Go to the linefollower loop

}

SUMO();
}
/************************** 5 second startup **************************/
SUMO()
{
sbi(PORTD, 2); //Turn on L1
for(x=0; x<start_time; x++); //Pause for a second
sbi(PORTD, 3); //Turn on L2
for(x=0; x<start_time; x++); //Pause for a second
sbi(PORTD, 4); //Turn on L3
for(x=0; x<start_time; x++); //Pause for a second
sbi(PORTD, 5); //Turn on L4
for(x=0; x<start_time; x++); //Pause for a second
sbi(PORTD, 6); //Turn on L5
for(x=0; x<start_time; x++); //Pause for a second

cbi(PORTD, 2); //Turn off L1

cbi(PORTD, 3); //Turn off L2
cbi(PORTD, 4); //Turn off L3
cbi(PORTD, 5); //Turn off L4
cbi(PORTD, 6); //Turn off L5
/************************* End 5 second startup **********************/

while(1) //Do this sumo loop forever
{
left = ADCIN(0); //Read line sensor (Left)
//mleft = ADCIN(1); // (Center Left) - Not used for Sumo
//middle = ADCIN(2); // (Center) - Not used for Sumo
//mright = ADCIN(3); // (Center Right) - Not used for Sumo
right = ADCIN(4); //Read line sensor (Right)

sbi(PORTB, 1);//Enable left motor
sbi(PORTB, 2);//Enable Right motor
sbi(PORTB, 4);//Forward left motor
sbi(PORTB, 5);//Forward Right motor

if(right < thresh) //Seeing white line on right sensor
{

for(x=0; x<6000; x++) //slam both motors into reverse to prevent drifting over the
line

{
cbi(PORTB, 4); //Reverse left motor
cbi(PORTB, 5); //Reverse right motor
}

for(x=0; x<reverse_time; x++) //Turn around with duration given by "reverse_time"
{
cbi(PORTB, 4); //Reverse left motor
cbi(PORTB, 2); //Stop right motor
}

}

if(left < thresh) //Seeing white line on left sensor
{

for(x=0; x<6000; x++) //slam both motors into reverse to prevent drifting over the
line

{
cbi(PORTB, 4); //Reverse left mo tor

cbi(PORTB, 5); //Reverse right motor
}

for(x=0; x<reverse_time; x++)
{
cbi(PORTB, 1); //Stop left motor
cbi(PORTB, 5); //Reverse right motor
}

}

IRin = inp(PIND); //Read inputs from port D
IRin = (IRin & 0x3); //Mask bits (1100000) PD0, PD1

if(IRin == 2) //See opponent with Right sensor
{
sbi(PORTD, 2); //Turn on L1
cbi(PORTD, 6); //Turn off L5
cbi(PORTB, 1); //Disable Right motor
}

if(IRin == 1) //See opponent with Left sensor
{
sbi(PORTD, 6); //Turn on L5
cbi(PORTD, 2); //Turn off L1
cbi(PORTB, 2); //Disable Left motor
}

if(IRin == 0) //Both sensors see opponent
{
sbi(PORTD, 2); //Turn on L1
sbi(PORTD, 6); //Turn on L5
sbi(PORTB, 2); //Enable Left motor
sbi(PORTB, 1); //Enable Right motor
}

if(IRin == 3) //Neither sensor sees opponent
{
cbi(PORTD, 2); //Turn on L1
cbi(PORTD, 6); //Turn on L5
}
}
}

/****************************** Linefollower start *******************************/
LINEFOLLOWER()
{
while(1) //Do loop forever
{

TCCR1A = BV(WGM10) | BV(COM1A1) | BV(COM1B1); //Setup PWM for left and right motors
TCCR1B = BV(CS10) | BV(WGM12); //ditto

left = ADCIN(channel = 0); //Read line sensors (Left)
mleft = ADCIN(channel = 1); //(Middle Left)
middle = ADCIN(channel = 2); //(Middle)
mright = ADCIN(channel = 3); //(Middle Right)
right = ADCIN(channel = 4); //(Right)

if(right < thresh) //Seeing white on right sensor
{
sbi(PORTD, 6); //Turn on LED5
}

if(right > thresh) //Seeing black on right sensor
for(z=0; z<200; z++)

{
cbi(PORTD, 6); //Turn off LED5
cbi(PORTB, 5); //Left motor backward

}
if(mright < thresh) //Seeing white on middle right sensor

{
sbi(PORTD, 5); //Turn on LED4
}

if(mright > thresh) //Seeing black on middle right sensor
for(z=0; z<200; z++)

{
cbi(PORTD, 5); //Turn off LED4
OCR1B = 127; //Slow down Right motor

}

if(middle < thresh) //Seeing white on middle sensor
{
sbi(PORTD, 4); //Turn on LED3
}

if(middle > thresh) //Seeing black on middle sensor
{
cbi(PORTD, 4); //Turn off LED3
sbi(PORTB, 4); //Forward Right motor
sbi(PORTB, 5); //Forward Left motor
OCR1B = 255; //Set speed of Right motor
OCR1A = 255; //Set Speed of Left motor
}

if(mleft < thresh) //Seeing white
{
sbi(PORTD, 3); //Turn on LED2
}

if(mleft > thresh) //Seeing black
for(z=0; z<200; z++)

{
cbi(PORTD, 3); //Turn off LED2
OCR1A = 127; //Set Speed of Left motor

}
if(left < thresh) //Seeing white

{
sbi(PORTD, 2); //Turn on LED1
}

if(left > thresh) //Seeing black
for(z=0; z<200; z++)

{
cbi(PORTD, 2); //Turn off LED1
cbi(PORTB, 4); //Reverse right motor

}

}
}

/******************************** ADC function *********************************/
int ADCIN(int channel)
{
//Left adjust result for 8 bit res //Set reference to AVCC //Set channel
ADMUX = BV(ADLAR) | BV(REFS0) | channel;

//Enable ADC //Start Conversion
ADCSRA = BV(ADEN) | BV(ADSC);

for(x=0; x<10; x++); // Pause for channel change

//Wait until conversion is complete
loop_until_bit_is_clear(ADCSRA, BV(ADSC));

//Write value to ADCH
value = ADCH;

return value;
 }
/************************************ END ***************************************/

Default Program Listing (”sumoline.c”) cont’d
The ATmega8 Brainboard

This is the default code that your
ATmega8 ships with. If you mess
something up, you can either re-
download it from our website, or
type it in from what you see here
(ug!).

There are three major sections to the
code, being the startup routine, the
Sumo routine, and the Line-follower
routine. If you start your Sumovore
on a black surface (like a sumo ring),
the startup routine reads the low
inputs from the edge sensors and
determines that it should start the
sumo routine. When on a white
surface (like line-follower usually is,
with a black electrical tape line), then
the startup routine kicks the
Sumovore into running the line-
follower routine.

Both of these programs are pretty
decent, but there is much more
room for creative optimizing. Feel
free to modify and hack this code -
we’ presenting it to you as a good
starting point.

Brainboard Schematics

For those of you wanting to do more
customizing to your ATmega8 Brainboard,
here are the microcontroller pin assignments
and the PCB schematic.

We’ve put the servo headers to good use by
placing a servo on the top of our brainboard,
and have it point an arrow in the direction it
was going to move while doing line follower. It
certainly adds character to a robot!

The ATmega8 Brainboard

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28Reset

IR Left (PD0)

IR Right (PD1)

LED1 (PD2)

LED2 (PD3)

LED3 (PD4)

VCC

GND

Xtal 1 (PB6)

Xtal 2 (PB7)

LED4 (PD5)

LED5 (PD6)

Servo 2 (PD7)

Servo 3 (PB0) Right motor Enable (PB1)

Left motor Enable (PB2)

Servo 1 (PB3)

Right motor Direction (PB4)

Left motor Direction (PB5)

AVCC

AREF

GND

Edge Right (PC0)

Edge Center Right (PC1)

Edge Center (PC2)

Edge Center Left (PC3)

Edge Left (PC4)

N.C. (PC5)

Brainboard Schematic
(drawn with approximate component placement)

ATmega8 Microcontroller
Pin Usage

+

+

Plug 2

Plug 3

Plug 4

Plug 1

9 10 11 12 151413 16

1

2

3

4

5

6

7

8
17

18

19

20

21

22

23

24

1234567891
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6 2
7

2
8

MOSI

MISO

SCK

RST

GND

+

+

R11-10K

R
2

-2
4

0

R
3

-2
4

0

R
4

-2
4

0

R
5

-2
4

0

+

+

L1 L2 L3 L4 L5 R17

1k

R6-1k

R7-1k R8-1k

R9-1k R10-1k

+

STK500

R12-10k

R13-10k

R14-10k

R15-10k

R16-10k

R
1

-1
0

0
k

D1 D2

Reset

Q1

Q2

+

S1 S2 S3

SP12 Programmer

Servo / Aux Headers

PC5
(spare)

If you have any questions regarding this kit, please contact us!

Solarbotics Ltd.
179 Harvest Glen Way N.E.

Calgary, Alberta, Canada T3K 4J4
Toll Free: 866-276-2687 / 403-232-6268 Fax: (403) 226-3741

Website: http://www.solarbotics.com
Email: info@solarbotics.com

© Copyright Solarbotics Ltd., 2004

