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AbstractWe describe the design and testing of a novelbiologically-inspired wind sensor, based on thecricket's cercal �liform hair cells. The sensor ismounted on a Khepera mobile robot, and competenceat following a real wind plume is shown, even at lowwind speeds. Further testing demonstrates the abil-ity of the system to perform a dynamic maze solvingtask, and the exploitation of the hair sensors as tactilewhiskers is discussed.

1 IntroductionRobot designs can be improved by considering bi-ological mechanisms. There is evidence that a varietyof organisms can detect wind direction, and use thisinformation to orientate and locomote upwind (posi-tive anemotaxis). Such behaviour is known in beetles[1], moths, 
ies, wasps [2] and crickets [4], as well as inmammals such as rodents and larger predators includ-ing cats, dogs and apes. The primary reason appearsto be related to the detection of airborne chemicalodours. Chemicals released into the atmosphere arecarried along in the direction of the air 
ow, creatinga plume. Locating the source of the plume will neces-sarily reveal the source of the odour, be it food or apredator [3].To measure wind direction, an animal must eithersense the passing mass of air directly, or some causale�ect of it, such as a surface temperature cooling. Ex-ample mechanical equivalents of these techniques in-clude the wind vane and hot-wire anemometer respec-tively. Equivalent biological structures are wind sen-sitive hair cells and temperature sensors in the skin.A particularly well studied biological system capa-ble of determining wind direction is the cercal systemfound in insects such as the cricket and cockroach [4].The cerci, two antennae-like appendages that protrude
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from the rear of the animal, are covered by hundredsof �liform hair cells. These hair cells, which vary inlength from 0.1{2mm, have been shown to respond toboth constant wind and wind pu� stimuli. In addi-tion, the response of each hair cell exhibits a char-acteristic wind directionality tuning curve, typicallywith a unidirectional preference. From the responseof these hair cells the cricket is able to calculate thedirection of approach of an incoming predator, suchas the digger wasp, and execute a suitably orientedescape behaviour.This paper describes the design of a neuromor-phic wind-sensor inspired by the unidirectional �liformhairs of the cricket. The sensor is mounted on a Khep-era mobile robot and its ability to track a wind plumeunder a range of conditions is demonstrated.
2 TransductionThe basic sensor device is a spring surrounded byfour metal pins, as shown in Figure 1. The spring wirewas 0.004ml stainless steel wound to 2mm diameter,



and the signal pins are gold-plated 0.7mm square Au-gat Wirewrap Headers. The spring was longer thanthe pins, and stretched and end-weighted so that itde
ected in the presence of wind. The spring was con-nected to +5V, so that when it made contact with thesignal pin, the pin was pulled high. The contacts weresupposedly binary, but due to the bouncing knife-edgereaction of the spring against the pins, the output sig-nals were far more stochastic than expected. The sen-sitivity of the sensor could be adjusted by changingthe properties of the spring (length and sti�ness) andadjusting the heat shrink counterweights so that theinherent stability of the sensors was always at thresh-old, providing a signi�cant noise 
oor but also opti-mising sensitivity.The sensor design utilized the signal from only oneof the four available pins per spring. The potential in-formation that is discarded is o�set by an increase inthe accuracy to which the sensitivity of the device canbe tuned. The tuning task therefore changes from oneof balancing the four non-independent pins, to min-imising the separation of a single pin from the spring.The result is that, like the cricket �liform hairs, eachdevice can be tuned for maximum sensitivity in a sin-gle direction.Sensitivity to wind from other directions can beadded easily by combining more of the basic hair de-vices oriented at the desired angles. In theory an ar-bitrary number of homogeneous or heterogeneous de-vices could be combined to increase the range of sen-sitivity of the combined sensor. The sensor used inthese experiments consisted of four devices arrangedat right angles to one another.The sensor was placed on a Khepera robot equippedwith a standard I/O turret, as shown in Figure 2. Theoutputs from the four sensors were connected to fourdigital inputs and read from the K-Bus using standardoperating system calls. Power for the sensor was takenfrom the +5V and GND turret connections. The windsource used was a 12" diameter desktop fan.
3 Algorithms3.1 Minimalist AlgorithmAs in Figure 3, the hair sensors are numbered 0 to 3clockwise from the front-left. The �rst algorithm thatwe tested was designed to set a baseline for the mini-mum processing required to generate the behaviour:1. Read inputs from all hairs.

Figure 2: The combined wind sensor mountedon the Khepera miniature mobile robot. Thefan used as the wind stimulus can be seenin the background. Videos of the behavioursdescribed in this paper can be found atftp://ganglion.stir.ac.uk/pub/Floella-videos/.
2. If Hair 3 (back-left) is on then turn rightslowly.3. Else if Hair 2 (back-right) is on then turnleft slowly.4. Else if Hair 1 (front-right) is on thenturn left quickly.5. Else if Hair 0 (front-left) is on then turnright quickly.6. Else move forward slowly.7. Go to step 1.The algorithm was allowed to run at full speed on theKhepera's MC68331 processor. It proved to be suc-cessful at locating the wind source from a distance of2 metres (wind speed ~1 m/s), despite the inherentasymmetry in the turning priority introduced by or-dering the hair sensors with an If...else construct. Thealgorithm was also tested in reverse by inverting thespeed and direction of turns for each of the sensors.This resulted, as expected, in the robot orienting andmoving away from the fan. Competence level at thistask was also good.Qualitative analysis of the robot's behaviour sug-gested that the task competence involved using thetwo front sensors as `error' signals and the two back
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Figure 3: A minimal algorithm to perform the positiveanemotaxis behaviour.
sensors for `�ne-tuning'. When the robot faced awayfrom the wind source one or both of the front sensorswould be stimulated the most, in either case causingthe robot to turn rapidly until it was oriented roughlyupwind. In this situation the front sensors becamevery unlikely to �re (the wind blowing the spring awayfrom the active pin), instead, the back sensors wereused to make �ne adjustments to the robot's course.Simple ablation studies conducted by placing an in-sulating material over the appropriate signal pins sup-ported these hypotheses. As expected, removing thetwo front `error' signals did not entirely prevent therobot from locating the wind source, but did increasethe time taken to turn around when facing away fromthe wind source. Removing only a single front sig-nal pin, however, did not signi�cantly degrade perfor-mance as compared with the full sensor. This evidencestrongly supports the notion that the informationalcontent of the front pins is equivalent to a `severe di-rectional error' signal.Removing the two back `�ne-tuning' signals had amore severe impact on performance. Without thesethe robot seemed to lose its ability to `lock on' to thetarget, resulting in a circuitous path with many loops.Removing only a single back hair improved the situa-tion somewhat, but performance was still poor.3.2 Temporal Binning AlgorithmTwo main problems with the minimal algorithmbecame apparent. Firstly, a directional bias, due tothe asymmetry of algorithm. Secondly, a tendency to`jitter' left and right, because the algorithm was exe-cuting (and thus changing the motor speeds) at many

thousands of cycles per second. To correct these prob-lems we proposed a new `temporal binning' algorithm,as follows:1. Create a bin counter for each hair.2. Zero all counters.3. Read inputs from all hairs.4. For each hair that is on, increment therespective bin counter5. Repeat steps 3 and 4 for a fixed numberof binning cycles6. If the combined total of the front hairsis greater than the back hairs then(a) Turn quickly and proportionally tothe totals of the front hairs.(b) Else turn slowly and proportionallyto the totals of the back hairs.7. Go to step 2.As before, the algorithm was executed at full speedon the Khepera. The bin size parameter could be ad-justed from a single cycle (equivalent to the minimalistalgorithm) up to many millions of cycles (lasting sev-eral minutes).For small bin sizes the model behaved similarly tothe minimalist model described above, with the addedenhancement of correcting the asymmetry problem.Increasing the bin size also corrected the `jitter' prob-lem, with bin sizes of around 100 to 1,000 cycles re-sulting in the robot taking longer and smoother turns,and the ability to track the wind plume from over 4metres (wind speed ~.6 m/s). Bin sizes up to 10,000cycles produced a noticeably curved path, but did notgreatly reduce the ability of the robot to locate thewind source under moderate conditions. Even withbin sizes of 100,000 cycles, which allowed the robotsu�cient time to perform a complete 360� turn be-tween motor updates, the wind source could still belocated, although by now the performance was muchimpaired. Nevertheless, these tests demonstrate therobustness of the temporal binning algorithm acrossbin sizes spanning six orders of magnitude and theadvantages gained by integrating sensory input overan extended period on time.



3.3 Other FactorsEgo-motion Before testing the system, we expectedthe motion of the Khepera robot to a�ect the hair sen-sors far more than the wind itself. Surprisingly how-ever, even though the springs were greatly a�ected bythe movement of the robot, the wind direction couldstill be determined properly. This was due to integra-tion of the signal over a long time period, relative tothe vibration rate of the hairs.Biases Perfectly balancing the sensitivity levels ofthe four hair sensors proved to be almost impossi-ble, and certainly would not have been robust had weachieved it. The result of this was the introduction ofa small bias in the turning preference. In the presenceof a wind stimulus the e�ects of this bias were insignif-icant, however, with no wind present the result was tocause the robot to travel in a circle. Rather than be-ing a hindrance, however, this behaviour assisted therobot if it moved out of the wind stream. For example,with a clockwise bias, if the robot left the wind plumeon the left-hand side the clockwise circle naturally re-turned it towards the fan. If, conversely, the robotleft the wind plume on the right, the bias caused itto loop back until it returned to the stimulus furtherdownwind. This is reminiscent of behaviours observedin real animals, such as ants following a chemical trail.
4 Maze SolvingMuch of the behaviour of a real world situatedagent is derived from its ability to exploit the physicalcharacteristics of its environment through the agent-environment feedback loop [6]. Exploitation of theturning bias as a way to relocate the wind streamis one example of this. Location of a wind sourcethrough the dynamic interaction of the air 
ow, hairsensors and mobile base is another. We were inter-ested in testing these properties in a more complexand challenging situation, as well as developing a morecontrolled test environment. Maze solving presenteditself as the ideal solution.No internal representation of the maze was used bythe robot. Instead the maze was solved directly inthe environment by exploiting the natural propertiesof air 
ow. This approach conferred two major ben-e�ts to the robotic system. Firstly, it simpli�ed thecontrol structure from a full-blown generic maze nav-igation algorithm to a sub-representational wind fol-lower. Secondly, the nature of the problem solving was
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Figure 4: Layout of the 4 component T-Maze. A -entrance, B - exit, * - choice point.
inherently dynamic; the robot necessarily reacts in asensible manner to any changes that occur in the envi-ronment, such as moved obstacles or new wind sources.Using physical sensors as matched �lters for a particu-lar stimulus in this way solves many of the di�cultiesassociated with traditional navigation problems.The maze design chosen for these experiments wasbased on a classic \T-maze" design, more commonlyused for testing forced choice decisions in rats. Themaze, shown in Figure 4, was based around four Tcomponents, thus providing four choice points. Ateach of these junctions the robot had to \make a deci-sion" about which way to turn. This method providesan explicit mapping of the internal dynamics of thesystem into a behaviour that can be observed clearlyand unambiguously. Correct decisions were de�nedas those choice points at which, on its �rst encounterwith the junction, the robot departed along the corri-dor nearest to the maze exit. Departure in any otherdirection was counted as an incorrect decision. Thisprovided us with a convenient 5 point error scale onwhich to rate the successfulness of a given trial. Timetaken to complete (or fail, by leaving through the en-trance) the maze was also recorded as a second mea-sure of task performance.The robot executed the temporal binning algorithmdescribed in Section 3.2, with the bin size parameterset to 100 cycles. In addition to the previous algo-rithm, the Khepera's built-in IR obstacle proximitysensors were used to provide a simple mechanism forpreventing the robot from getting stuck on the walls of
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Figure 5: Percentage success rates for forward andreverse maze directions.
the maze. The avoidance algorithm was: if the com-bined output from the IR sensors is greater than athreshold value then turn away from the side with thelarger activation value.Three di�erent wind conditions were tested: `wind',`no wind' and `no sensors'. In the `wind' condition thesensors were active and the fan was positioned at theexit to the maze and set on either `high' or `low' (50%of the trials each). In the `no wind' condition the windstimulus was switched o� in all trials, although thesensors were still active. In the `no sensors' conditionboth the fan and the hair sensors were inactive. Twomaze direction conditions were also tested. The �rstwas as shown in Figure 4, the second was identical ex-cept that the entrance and the exit of the maze (pointsA and B) were reversed. This condition introduced aninteresting challenge for the robot because the appro-priate moment to turn is no longer forced. Instead thedecision must be made spontaneously whilst navigat-ing along the corridor.
5 ResultsFor each condition, time taken to reach the exit,and the number of errors made during the journeywere recorded. Trials where the robot failed to solvethe maze (by exiting through the entrance) scoredmaximum errors and were removed from the timingdata.Forward Direction The robot solved the maze onmore than 80% of trials in the forward direction (Fig-
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Figure 6: Mean times and errors taken to solve themaze in the forward direction. Error bars show stan-dard deviations.
ure 5). The timing data (Figure 6) shows that the`wind' group performed the best, having a clear ad-vantage over the `no wind' group. The `no sensors'group timings were anomalous: the times were bothrelatively fast and remarkably consistent, suggestinga high level of performance. However, inspection ofthe error graph shows that the performance was atchance level. Closer inspection of these trials showedthat in every case the robot followed exactly the samepath, making exactly the same errors, a result con-�rmed by the 100% success rate (Figure 5). The re-sults can therefore be attributed to the high qualityof the Khepera's engineering combined with the factthat a T-Maze acts as funnel towards its exit.The error data supports the timing data. The meannumber of errors for the `wind' group was close to zero,indicating reliable, error-free performance. Compara-tively, the `no wind' and `no sensors' groups were per-forming at around chance level.
Reverse Direction In this more di�cult conditionthe `wind' group performed only slightly worse. Thesuccess rate was still over 80% but more errors weremade (Figures 5 and 7). The `no wind' group, how-ever, performed surprisingly well considering that themaze no longer funnels the robot towards the exit.Figure 5 shows that the `no wind' group actually suc-ceeded more often in the reverse direction. The `nosensors' group failed on every trial (by travelling tothe �rst dead-end, performing a 180� turn to avoidthe wall, and proceeding back out of the maze) so nodata were available for the time analysis and maxi-
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Figure 7: Mean times and errors taken to solve themaze in the reverse direction. Error bars show stan-dard deviations. Note that the `no sensors' groupfailed on every trial.
mum errors were scored in every trial.We were interested (and concerned) as to how the`no wind' group was performing so well in the re-verse maze condition without a wind stimulus. Per-haps there was a latent 
ow of air through the maze?Close inspection, however, revealed that this was notthe case. Rather, the robot was using a combination ofhair sensor bias and mechanoreception. In short, theinitial and �nal turns (both right-hand) were madedue to the clockwise turning bias described in Section3.3. The second and third left-hand turns were nav-igated by the left hair sensors (0 and 3 in Figure 3)brushing along the inner wall of the maze. The e�ectof this was to support the hairs slightly, keeping themfrom making contact with their respective signal pinsand, therefore, the robot from making a right-handturn. Without this balancing force, the movement ofthe right hair sensors induced from ego-motion alonewas enough to produce regular left turns. The resultwas that the robot tracked its way e�ciently along theleft-hand wall and around the two corners, using itswind sensors as whiskers.
6 ConclusionsWe have described the design and preliminary test-ing of a biologically-inspired wind sensor. The sensorwas mounted on a mobile robot and we demonstratedits ability to track a wind plume using only a minimalcontrol algorithm. An improved algorithm employing

temporal binning techniques to allow better extrac-tion of the signal from ego-motion induced noise, byintegration of sensory input over time, enhanced therange and performance of the system.We demonstrated the utility and robustness of thesystem by applying it to a maze solving task. Therobot performed well above chance level under boththe easier (forward) and more di�cult (reverse) con-ditions. Interesting results were found when the windstimulus was removed, as the robot was still able tosolve the maze under the reverse condition by exploit-ing its wind sensors as impromptu tactile whiskers andfeeling its way along the walls. Further investigationof this phenomena is in progress, along with a moreprecise characterisation of the sensor properties.The sensor has applications in a range of wind sens-ing tasks. Its digital output simpli�es interfacing is-sues, the power usage is low, and the sensor itselfis physically robust. Planned uses of the sensor in-clude the location of unexploded ordinance by chemi-cal plume following and as a tool for robotic modellingof biology.AcknowledgementsThis work was supported by and carried out at the1999 Telluride Workshop on Neuromorphic Engineer-ing.
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