
 

 

COM API Manual 

 

 
Describes the Component Object Model 
(COM) Application Program Interface 
(API) for each Phidget device. 



How to use Phidgets 
Phidgets are an easy to use set of building blocks for low cost sensing and control from 

your PC.  Using the Universal Serial Bus (USB) as the basis for all Phidgets, the 

complexity is managed behind this easy to use and robust Application Program Interface 

(API) library.  The COM API library makes Phidgets very natural to use from Visual 

Basic.  Phidgets have an interface very similar to the GUI widgets that you are used to 

programming with.   

Installing the Library 
To access the Phidget software components, you must first install the library on your 

computer:  

• To install the library go to www.Phidgets.com >> Dowloads >> Release 

• Select the PHIDGET.msi file. 

A dialog box will appear, asking if you would like to open the file or save it to your 

computer.  You can do either, but if you are unsure just select Open and follow the 

instructions. 

Now, to use Phidgets from Visual Basic open Project menu >> References, select Phidget 

Library, plug in your hardware, and you are ready to go! 

Basic Example 
This is a very simple example. 

' This code shows just how easy it is to connect to a PhidgetServo  
' and change the position of a servo motor 
 
' In Visual Basic open a blank form and use this code to connect to  
' the PhidgetServo 
 
Dim WithEvents Servo As PhidgetServo 
Private Sub Form_Load()                 'When the program opens 
    Set Servo = New PhidgetServo        'Define the variable "Servo" as a 
PhidgetServo 
     
    Call Servo.Open(True)               'Connect to the PhidgetServo and lock 
access to it 
     
    If (Servo.IsAttached = True) Then   'Check to see that a PhidgetServo was found 
        Servo.MotorPosition(0) = 90     'This is where the angle of the Servo is set 



        MsgBox "Success!" 
    Else 
        MsgBox "We were not able to find a PhidgetServo" 
                                        'When no PhidgetServo is found 
    End If 
End Sub                                 'That's all 



Software common to each device 
The following software is common to all Phidget components:  

PhidgetManager 
PhidgetManager will notify an application when new Phidget devices have been plugged 

into the computer, and when they disappear.  A reference to an IPhidget component 

suitable for that device will be passed back to the application, allowing the programmer 

to find out what kind of device was attached.  This is useful if you just want to know 

which Phidgets are attached to your system, but even more useful if you need your 

program to wait for a specific device to be plugged in after the program is running. 

IPhidget 

The IPhidget is the generalized Phidget instance that is returned by the PhidgetManager.  

Its type can be queried, and the programmer can then assign it to a particular Phidget 

objects that can be used to control the device in an appropriate way. 

Properties 

Property: DeviceType () as String 

Access: Get By Value 

Description: Returns the name of the device, e.g., "PhidgetEncoder". 

Property: DeviceVersion() as Single 

Access: Get By Value 

Description: Returns the version number of the device. 

Property: InputState(Index as Long) as Boolean 

Access: Get By Value 

Description: Returns the state of the designated input.  In the case of a switch or button 

which is normally open, True would correspond to when the switch is 

pressed. 

Property: IsAttached As Boolean 

Access: Get By Value 



Description: This property indicates there is a USB Phidget associated with this 

component. 

Property: LibraryVersion() as String 

Access: Get By Value 

Description: Returns the version of the DLL and COM Library installed. 

Property: NumInputs as Long 

Access: Get By Value 

Description: The number of inputs on this particular I/O device.  Please see the 

hardware descriptions for the details of device variations. 

Property: SerialNumber() as Long 

Access: Get By Value 

Description: Returns a unique serial number, e.g., 1201, which identifies a specific 

hardware device. 

Property: Tag as Variant 

Access: Get, Put By Value 

Description: Returns / Sets a user-defined piece of arbitrary data associated with this 

Phidget instance.  What would you use this for?  Your own serial 

numbering scheme for your application. 

Methods 

Method: Open(Locked As Boolean, [SerialNumber As Long]) 

Description: Open can be called to connect to a specific device without using the 

PhidgetManager.  The Locked parameter, if true, will attempt to open the 

device exclusively - the Phidget will not be accessible to other 

applications.  The optional SerialNumber parameter allows you to open a 

unique Phidget, if you know its serial number. 

Events 

Event: OnDetach() 



Description: Occurs when the Phidget is detached from the bus.  This allows the 

application to adapt to the loss of the physical device. 

Event: OnError(ByRef Description as BSTR, ByVal SCODE as Long) 

Description: Occurs when the Phidget Manager is unable to communicate with the 

Phidget.  This error is used when a call fails unexpectedly, typically when 

a device is detached but the OnDetach event has not yet been fired.  

SCODE can take the following values:  

SCODE Error Description 

100 Device is not being maintained by the Phidget Manager.  This 

error will occur after the USB Phidget has been detached and 

the API continues to send commands.  Not Serious. 

101  Attempt to write to the Phidget failed.  This error can occur 

after the USB Phidget is detached and before the Phidget 

Manager has noticed.  It is not unusual to get several of 

these errors when a device is detached. 

102 Attempt to read the Phidget failed.  This error can occur 

when the device is read after it is detached but before the 

Phidget Manager noticed.  It is not unusual to get several of 

these errors when a device is detached. 

111 Unknown Phidget COM Class. 

112 Error Changing Phidget Interface. 

113 Unable To Open New Phidget. 

114 Unexpected Error:  Unknown Phidget Detaching. 

 

Event: OnInputChange(ByVal Index as Long, ByVal NewState as Boolean) 

Description: This event is triggered when the input's state is changed.  The number of 

the particular input is returned, as well as the state of the input:  True is 

On, False is Off.  In the case of a switch (button) implementation, True 

would correspond to when the switch is pressed. 



Specific devices 
Each Phidget component is described along with its API. 

PhidgetEncoder 
The PhidgetEncoder is a component that provides a high-level programmer interface to 

control a PhidgetEncoder device connected through a USB port. With this component, 

the programmer can:  

• Detect changes in position of incremental and absolute encoders. 

• Easily track the changes with respect to time. 

A reference to the actual device can obtained be through the PhidgetManager, or with the 

Open method on the software component. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: EncoderPosition() as Long 

Access: Get, Put By Value 

Description: Returns / Sets the position of the encoder shaft.  This property will behave 

differently for absolute and incremental encoders.  An absolute encoder 

will vary this property from 0 to (CPR - 1), wrapping with each 

revolution.  An incremental encoder will increment or decrement this 

property based on the direction of rotation. 

Property: NumEncoders() as Long 

Access: Get By Value 

Description: Returns the number of encoders supported by this device. 

Event: OnPositionChange(Index as Long, Time as Long, 

EncoderDisplacement as Long) 

Description: Occurs when the encoder shaft is rotated.  EncoderDisplacement indicates 

the change since the last OnPositionChange event was fired, and may be 

positive (clockwise) or negative.  Time is an estimate, in milliseconds, of 



the time since the last event was fired.  EncoderDisplacement and Time 

may be used to calculate a rough estimate of velocity. 



PhidgetInterfaceKit 
The PhidgetInterfaceKit is a component that provides a high-level programmer interface 

to control a PhidgetInterfaceKit device connected through a USB port.  With this 

component, the programmer can:  

• Turn particular outputs on and off. 

• Get notified of changes of state of the inputs as events. 

• Configure events to fire when the analog inputs change. 

The PhidgetInterfaceKit devices provide a combination of  

• Digital outputs. 

• Digital inputs. 

• Analog inputs. 

A reference to the actual device can be obtained through the PhidgetManager, or with the 

Open method on the software component. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: NumOutputs as Long 

Access: Get By Value 

Description: The number of outputs on this particular I/O device.  Please see the 

hardware description for the details of device variations. 

Property: NumSensors as Long 

Access: Get By Value 

Description: The number of sensors on this particular I/O device.  Please see the 

hardware description for the details of device variations. 

Property: SensorChangeTrigger(Index as Long) as Long 

Access: Get, Put By Value 

Description: Sets/Returns the amount of change that should exist between a sensor's 

last reported value and the current value before an OnSensorChange event 

is fired.  



Property: SensorNormalizeMaximum (Index as Long) as Long 

Access: Get, Put By Value 

Description: Sets/Returns the maximum setting of a sensor's range.  This is usually 

1000, but if one sets it to a smaller value, e.g., 700, then the scale is 

adjusted so that the real range of 0 - 700 are normalized to 0 - 1000.  

Actual readings greater than this number are always reported as 1000. 

  There must be at lease a difference of 1 between this property and 

SensorNormalizeMinimum, otherwise E_INVALIDARG is returned. 

Property: SensorNormalizeMinimum (Index as Long) as Long 

Access: Get, Put By Value 

Description: Sets/Returns the minimum setting of a sensor's range.  This is usually 0, 

but if one sets it to a larger value, e.g., 200, then the scale is adjusted so 

that the real range of 200 - 1000 are normalized to 0 - 1000.  Actual 

readings less than this number are always reported as 0. 

  There must be at lease a difference of 1 between this property and 

SensorNormalizeMaximum, otherwise E_INVALIDARG is returned. 

Property: SensorRawValue(Index as Long) as Long 

Access: Get By Value 

Description: Returns the actual value of the sensor between 0 - 4095, regardless of how 

SensorNormalizeMaximum or SensorNormalizeMinimum have been set.  

This is directly proportional to the Analog Input, ranging from 0-5V. 

Property: SensorValue(Index as Long) as Long 

Access: Get By Value 

Description: Returns the digital value being detected, converted to fit between 0-1000.  

The raw values within the range of SensorNormalizeMaximum and 

SensorNormalizeMinimum are normalized to 0 - 1000. 

Event: OnInputChange(ByVal Index as Long, ByVal NewState as Boolean) 

Description: This event is triggered when the input's state is changed.  The number of 

the particular input is returned, as well as the state of the input:  True is 



On, False is Off.  In the case of a switch (button) implementation, True 

would correspond to when the switch is pressed. 

Event: OnOutputChange(ByVal Index as Long, ByVal NewState as Boolean) 

Description: This event is triggered when the output state is changed.  The number of 

the particular output is returned, as well as the state of the output:  True is 

On, False is Off.  In the case of an LED implementation, True would 

correspond to the LED being turned on. 

Event: OnSensorChange(ByVal Index as Long, ByVal SensorValue as Long) 

Description: This event is triggered when the sensor's value is changed from the last 

reading by plus or minus the SensorChangeTrigger value.  The number of 

the particular sensor is returned, as well as the sensor's value.  By default, 

this value is a number between 0 and 1000.  However, different sensors 

may return values within a subset of that range, i.e., there is no guarantee 

that the minimum or maximum value returned by a sensor is 0 or 1000. 



PhidgetServo 
The PhidgetServo is a component that provides a high-level programmer interface to 

control a PhidgetServo device connected through a USB port.  With this component, the 

programmer can:  

• Set the desired position for a servo motor, ranging from 0 to 180 degrees. 

A reference to the actual device can obtained through the PhidgetManager, or with the 

Open method on the software component. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: MotorPosition(Index as Long) as Single 

Access: Get, Put By Value 

Description: Sets/Returns the desired servo motor position for a particular servo motor.  

This value may range from -23 to 231, corresponding to time width of the 

control pulse, the angle that the Servo motor moves to depends on the 

characteristic of individual motors.  MotorPosition will return 

E_INVALIDARG if the value is not between -23 and 231 or if the index is 

not a valid servo.  Note that motor position requests are not cumulative.  

That is, let us say the current actual motor position is 0 and you do the 

following: 

  Servo.MotorPosition(1) = 180 

Servo.MotorPostion(1) = 0 

  The motor will not rotate all the way to 180 before returning back to 0.  

Rather, it will likely just begin rotating based on the first call, but will 

immediately return to 0 from its current position when it gets the second 

call.  All you would see (perhaps) is a very slight twitch.  If you wanted a 

cascading effect, you would likely have to use a timer to guarantee that the 

previous rotation was completed. 

Property: NumMotors () as Long 



Access: Get By Value 

Description: The maximum number of motors on this particular Phidget device.  Please 

see the hardware description for the details of device variations. 

  Note that there is no way of programmatically determining how many 

motors are actually plugged into the hardware. 

Event: OnPositionChanged(Index as Long, Position as Long) 

Description: Occurs when the servo motor is changing its position. 

  Note that this event is raised as a side effect of programmatically setting 

the MotorPosition property, i.e., it is the final resting position requested.  

Thus it may not match the actual current position of the actual motor (e.g., 

because of cascading requests as described in the MotorPosition property, 

or because the motor is still turning). 



PhidgetRFID 
The PhidgetRFID is a component that provides a high-level programmer interface to 

control a PhidgetRFID device connected through a USB port.  With this component, the 

programmer can:  

• Read Radio Frequency Identification tags. 

Radio Frequency Identification or RFID, is a non-contact identification technology which 

uses a reader to read data stored on low cost tags.  The particular instance of the 

technology we use stores a 40-bit number on the tag.  Every tag that is purchased from 

Phidgets Inc. is guaranteed unique. 

When a RFID tag is read, the component returns the unique number contained in the 

RFID tag. 

A reference to the actual device can be obtained through the PhidgetManager, or with the 

Open method on the software component. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: OutputState(Index as Long) as Boolean 

Access: Get, Put By Value 

Description: Sets/Returns the state of the designated output to True or False.  

Depending on the type of output available, the specified output goes to a 

high value or completes a connection.  Please see the hardware description 

for the details of device variations. 

Event: OnTag(Index As Long, TagNumber As String) 

Description: Occurs when a valid tag is read by a reader.  Index indicates which reader 

recognized the tag.  TagNumber is the unique ID read from the tag.  



PhidgetTextLCD 
The PhidgetTextLCD is a component that provides a high-level programmer interface to 

control a PhidgetTextLCD device connected through a USB port.  With this component, 

the programmer can:  

• Display text on a PhidgetTextLCD module. 

A reference to the actual device can obtained through the PhidgetManager, or with the 

Open method on the software component. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: Backlight as Boolean 

Access: Get, Put By Value 

Description: Turns the backlight for this LCD on or off. 

Property: CursorBlink as Boolean 

Access: Get, Put By Value 

Description: Sets the cursor's blinking on or off. 

Property: CursorOn as Boolean 

Access: Get, Put By Value 

Description: Turns the cursor on or off.  This cursor is displayed at the last location that 

was changed. 

Property: DisplayString(Index as Long) as String 

Access: Put By Value 

Description: Sets the text to display on a particular row of the display.  Text will be 

clipped at the right edge of the display. 

Property: NumColumns as Long 

Access: Get By Value 

Description: Returns number of columns of text that may be used on the display. 

Property: NumRows as Long 



Access: Get By Value 

Description: Returns number of rows of text that may be presented on the display. 



PhidgetLED 
The PhidgetLED is a component that provides a high-level programmer interface to 

control a PhidgetLED device connected through a USB port.  With this component, the 

programmer can:  

• Control each led individually, On/Off and Brightness. 

A reference to the actual device can be obtained through the PhidgetManager, or with the 

Open method on the software component. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: DiscreteLED(Index As Long) As Long 

Access: Get, Put By Value 

Description: Set the brightness of an individual LED.  Range of brightness is 0-100. 

Property: NumLEDs As Long 

Access: Get By Value 

Description: Indicates how many LEDs are supported by this controller. 



PhidgetTextLED 
The PhidgetTextLED is a component that provides a high-level programmer interface to 

control a PhidgetTextLED device connected through a USB port.  With this component, 

the programmer can:  

• Display text and numbers on segment type LED modules. 

• Brightness can be controlled for the entire display. 

In the case of 7-segment LED characters numbers are displayed easily and text can be 

displayed with some restrictions. 

A reference to the actual device can be obtained through the PhidgetManager, or with the 

Open method on the software component. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: Brightness As Long 

Access: Get, Put By Value 

Description: Controls the brightness of the LED display.  Varying this property will 

control the brightness uniformly across all digits in the display. 

Property: DisplayRawData() as String 

Access: Put By Value 

Description: Sets raw binary data, with each bit corresponding to an LED.  This 

property will be replaced.  

Property: DisplayString(Index as Long) as String 

Access: Put By Value 

Description: Sets the text to display on a particular row of the display.  Text will be 

clipped at the right edge of the display. 

Property: NumColumns as Long 

Access: Get By Value 

Description: Returns number of columns of text that may be presented on the display. 

Property: NumRows as Long 



Access: Get By Value 

Description: Returns number of rows of text that may be presented on the display. 



PhidgetAccelerometer 
The PhidgetAccelerometer is a component that provides a high-level programmer 

interface to control a PhidgetAccelerometer device connected through a USB port.  With 

this component, the programmer can:  

• Measure +-2 times Gravity (9.8 m/s2) change per axis. 

• Measure both dynamic acceleration (e.g., vibration) and static acceleration (e.g., 

gravity or tilt). 

A reference to the actual device can be obtained through the PhidgetManager, or with the 

Open method on the software component. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: Acceleration(Index as Long) as Double 

Access: Get By Value 

Description: Gets the last reported acceleration for this axis, selected by Index. 

Property: AccelerationChangeTrigger(Index as Long) as Double 

Access: Get, Put By Value 

Description: Sets/gets the change in acceleration required before the 

OnAccelerationChange event will fire.  If this property is set to zero, the 

event will fire every time there is an update from the device. 

Property: NumAxis As Long 

Access: Get by Value 

Description: Returns the number of axis that this accelerometer measures acceleration 

on.  Each axis is measured and reported independently. 

Event: OnAccelerationChange(Index as Long, Acceleration as Double) 

Description: Fires when an axis is changing. 



PhidgetWeightSensor 
The PhidgetWeightSensor is a component that provides a high-level programmer 

interface to control a PhidgetWeightSensor device connected through a USB port.  With 

this component, the programmer can:  

• Read the weight of an item or person on the weight scale. 

A reference to the actual device can be obtained through the PhidgetManager, or with the 

Open method on the software component. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: UseImperial As Boolean 

Access: Get, Put By Value 

Description: Changes from Metric (SI units) to Imperial (USA, Myanmar, Liberia). 

Property: Weight As Double 

Access: Get By Value 

Description: Returns the current weight in Kilograms or Pounds (depending on 

UseImperial property). 

Property: WeightChangeTrigger as Double 

Access: Get/Put By Value 

Description: Sets/Returns the amount of change that should exist between the last 

reported weight and the current weight before an OnWeightChange event 

is fired. 

Event: OnWeightChange(Weight As Double) 

Description: Fires when the value received from the PhidgetWeightSensor has changed 

by an amount greater than it's WeightChangeTrigger property. 



PhidgetTemperatureSensor 
The PhidgetTemperatureSensor is a component that provides a high-level programmer 

interface to control a PhidgetTemperatureSensor device connected through a USB port.  

With this component, the programmer can:  

• Read the temperature of Thermocouple device. 

• Read cold junction temperature. 

• Get notification of temperature change. 

• Use metric or imperial units. 

A reference to the actual device can be obtained through the PhidgetManager, or with the 

Open method on the software component. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: NumTemperatureInputs() As Long 

Access: Get By Value 

Description: Indicates how many thermocouple inputs are supported on this controller. 

Property: Temperature(Index As Long) As Double 

Access: Get By Value 

Description: Returns the current temperature in Celsius or Fahrenheit (depending on 

UseImperial property).  Index = 0 returns the temperature of the cold 

junction.  Index = 1 returns the temperature of the thermocouple. 

Property: TemperatureChangeTrigger 

Access: Get, Put By Value 

Description: Sets/Returns the amount of change that should exist between the last 

reported temperature and the current temperature before an 

OnTemperatureChange event is fired. 

Property: UseImperial As Boolean 

Access: Get, Put By Value 

Description: Changes from Metric (SI units) to Imperial (USA, Myanmar, Liberia). 



Event: OnTemperatureChange(Index As Long, Temperature As Double) 

Description: Fires when a temperature input has changed by an amount greater than its 

TemperatureChangeTrigger property. 



PhidgetMotorControl 
The PhidgetMotorControl is a component that provides a high-level programmer 

interface to control a PhidgetMotorControl device connected through a USB port.  With 

this component, the programmer can:  

• Control direction, and start and stop DC motors. 

• Control the velocity and acceleration of each DC motor. 

• Read the limit switch. 

A reference to the actual device can be obtained through the PhidgetManager, or with the 

Open method on the software component. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: Acceleration(Index As Long) As Long 

Access: Get, Put By Value 

Description: This controls the rate of ramping. 

Property: MotorSpeed(Index as Long) As Long 

Access: Get, Put By Value 

Description: Sets the amount of power to apply to the motor, scaled from 0 to 100.  

There is no true feedback from the motor, but increasing the MotorSpeed 

property will cause the motor to develop more torque, and turn at a higher 

speed. 

Property: NumInputs as Long 

Access: Get By Value 

Description: The number of inputs on this particular I/O device.  Please see the 

hardware description for the details of device variations. 

Property: NumMotors () as Long 

Access: Get By Value 

Description: The maximum number of motors on this particular Phidget device.  Please 

see the hardware description for the details of device variations. 



 Note that there is no way of programmatically determining how many 

motors are actually plugged into the hardware. 

Event: OnInputChange(ByVal Index as Long, ByVal NewState as Boolean) 

Description: This event is triggered when the input's state is changed.  The number of 

the particular input is returned, as well as the state of the input:  True is 

On, False is Off.  In the case of a switch (button) implementation, True 

would correspond to when the switch is pressed. 

Event: OnMotorChange(Index as Long, Speed as Long) 

Description: As the power being applied to the motor is ramped up or ramped down, 

this event will be fired periodically. 



PhidgetStepper 
The PhidgetStepper is a component that provides a high-level programmer interface to 

control a PhidgetStepper device connected through a USB port.  With this component, 

the programmer can:  

• Set the desired position for stepper motors. 

• Control the velocity and acceleration of each stepper motor. 

• Track the predicted position of the stepper motor. 

Stepper motors can be rotated continuously, moving in discrete steps. 

A reference to the actual device can be obtained through the PhidgetManager, or with the 

Open method on the software component. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: Acceleration(Index As Long) As Long 

Access: Get, Put By Value 

Description: The controls the rate of ramping. 

Property: MotorSpeed(Index as Long) As Long 

Access: Get, Put By Value 

Description: Sets the maximum speed of the motor, measured in steps per second. 

Property: NumInputs as Long 

Access: Get By Value 

Description: The number of inputs on this particular I/O device.  Please see the 

hardware description for the details of device variations. 

Property: NumMotors () as Long 

Access: Get By Value 

Description: The maximum number of motors on this particular Phidget device.  Please 

see the hardware description for the details of device variations. 



  Note that there is no way of programmatically determining how many 

motors are actually plugged into the hardware. 

Property: Torque(Index As Long) As Long 

Access: Get, Put By Value 

Description: Measures the current being consumed by the motor.  Setting this property 

changes the amount of current that will be applied.  Higher settings will 

increase torque, and power consumption.  Please note that MotorSpeed 

sets the ultimate speed of a stepper.  Torque increases the ability of the 

motor to do work. 

Event: OnInputChange(ByVal Index as Long, ByVal NewState as Boolean) 

Description: This event is triggered when the input's state is changed.  The number of 

the particular input is returned, as well as the state of the input:  True is 

On, False is Off.  In the case of a switch (button) implementation, True 

would correspond to when the switch is pressed. 

Event: OnPositionChange(Index As Long, Position As Double) 

Description: As the stepper moves, this event will fire periodically, with the new 

position. 



PhidgetAdvancedServo — Under Revision 
The PhidgetAdvancedServo is a component that provides a high-level programmer 

interface to control a PhidgetAdvancedServo device connected through a USB port.  

With this component, the programmer can:  

• Set the desired position for a servo motor, ranging from 0 to 180 degrees. 

• Control the velocity and acceleration of each servo motor. 

• Track the predicted position of the servo motor. 

A reference to the actual device is obtained through the PhidgetManager, after which the 

PhidgetAdvancedServo can be used to control the attached device until it is disconnected.  

After disconnection, the component will continue to function but with its IsAttached field 

set to false. 

In addition to the common software described above, the following interfaces are specific 

to this device:  

Property: NumMotors as Long 

Access: Get By Value 

Description: The maximum number of servo motors on this particular servo device.    

Please see the hardware description for the details of device variations. 

  Note that there is no way of programmatically determining how many 

motors are actually plugged into the USB device. 

Property: MotorPosition(Index as Long) as Single 

Access: Get, Put By Value 

Description: Sets/Returns the desired servo motor position for a particular servo motor. 

This value may range from 0 - 180, corresponding to degrees from the 

farthest counter-clockwise position.  ServoPosition will return 

E_INVALIDARG if the value is not between 0 and 180 or if the Index is 

not a valid servo. 

  Note that motor position requests are not cumulative.  That is, let us say 

the current actual motor position is 0 and you do the following: 

http://www.phidgets.com/modules.php?op=modload&name=Sections&file=index&req=viewarticle&artid=3&page=1


  Servo.MotorPosition(1) = 180 

Servo.MotorPostion(1) = 0 

  The motor will not rotate all the way to 180 before returning back to 0.  

Rather, it will likely just begin rotating based on the first call, but will 

immediately return to 0 from its current position when it gets the second 

call.  All you would see (perhaps) is a very slight twitch.  If you wanted a 

cascading effect, you would likely have to use a timer to guarantee that the 

previous rotation was completed. 

Property: MotorEnabled(Index as Long) as Boolean 

Access: Get, Put by Value 

Description: Sets / Returns a state that effectively relaxes the motor.  Note that 

changing the MotorPosition while MotorEnabled is false will set 

MotorEnabled to true. 

Property: MaxVelocity(Index as Long) as Single 

Access: Get, Put by Value 

Description: Sets / Returns the maximum velocity that a particular motor will be rotated 

at, measured in degrees per second. 

Property: Acceleration(Index as Long) as Single 

Access: Get, Put by Value 

Description: Sets / Returns the acceleration/deceleration which will be used while 

calculating the velocity, measured in degrees per second squared. 

Event: OnPositionChanged(Index as Long, Position as Long) 

Description: Occurs when the servo motor is changing its position. 

  Note that unlike the PhidgetServo device, this will typically reflect the 

actual position of the servo motor in question.  If this is not accurate, you 

have stalled the motor, or have the MaxVelocity property set to too high a 

value for your particular servo. 


	COM API Manual
	How to use Phidgets
	Installing the Library
	Basic Example

	Software common to each device
	PhidgetManager
	Properties
	Methods
	Events

	Specific devices
	PhidgetEncoder
	PhidgetInterfaceKit
	PhidgetServo
	PhidgetRFID
	PhidgetTextLCD
	PhidgetLED
	PhidgetTextLED
	PhidgetAccelerometer
	PhidgetWeightSensor
	PhidgetTemperatureSensor
	PhidgetMotorControl
	PhidgetStepper
	PhidgetAdvancedServo — Under Revision



