
ARDX
arduino

experimentation kit

Open-Source Arduino
Instruction Guide

ARDX

Document Revision: Nov 18 2015

Arduino
Experimenter’s Kit

SketchBoard Edition

All of .:oomlout:.'s and most of Solarbotics’ projects are open source. What does this mean? It

means everything involved in making this kit, be it this guide, 3D models, or code is available for

free download. But it goes further, you're also free to reproduce and modify any of this material,

then distribute it for yourself. The catch? Quite simple, it is released under a Creative Commons (By

- Share Alike) license. This means you must credit .:oomlout:. in your design and share your

developments in a similar manner. Why? We grew up learning and playing with open source

software and the experience was good fun, we think it would be lovely if a similar experience was

possible with physical things.

More details on the Creative Commons CC (By - Share Alike) License can be found at

http://ardx.org/CCLI

ABOUT OPEN SOURCE HARDWARE

A Few Words

ABOUT THIS KIT

The overall goal of this kit is fun. Beyond this, the aim is to get you

comfortable using a wide range of electronic components through

small, simple and easy circuits. The focus is to get each circuit

working then giving you the tools to figure out why. If you encounter

any problems, want to ask a question, or would like to know more about

any part, extra help is only an e-mail away support2@solarbotics.com.

ABOUT .: OOMLOUT :.

We’re a plucky little design company focusing on producing

“delightfully fun open source products”
To check out what we are up to

www.oomlout.com

ABOUT PROBLEMS

We strive to deliver the highest level of quality in each and every thing we produce. If you ever find an

ambiguous instruction, a missing piece, or would just like to ask a question, we’ll try our best to help out.

help@oomlout.com / support2@solarbotics.com
(we like hearing about problems it helps us improve future versions)

Thanks For Choosing .:oomlout:.
(and Solarbotics)

ABOUT SOLARBOTICS

We started out doing BEAM robot kits over 22 years ago (really!), and now we

also supply clever electronic bits & kits

http://www.solarbotics.com/

01

TBCN
table of contents.: WHERE TO FIND EVERYTHING :.

Before We Start

{ASEM} Assembling the Pieces 02

{INST} Installing the Software 03

{PROG} A Small Programming Primer 04

{ELEC} A Small Electronics Primer 06

The Circuits

{CIRC01} Getting Started - (Blinking LED) 08

{CIRC02} 8 LED Fun - (Multiple LEDs) 10

{CIRC03} Spin Motor Spin - (Transistor and Motor) 12

{CIRC04} A Single Servo - (Servos) 14

{CIRC05} 8 More LEDs - (74HC595 Shift Register) 16

{CIRC06} Music - (Piezo Elements) 18

{CIRC07} Button Pressing - (Pushbuttons) 20

{CIRC08} Twisting - (Potentiometers) 22

{CIRC09} Light - (Photo Resistors) 24

{CIRC10} Temperature - (TMP36 Temperature Sensor) 26

{CIRC11} Larger Loads - (Relays) 28

{CIRC12} Colorful Lights - (RGB LEDs) 30

02

01 ASEM
assembling the

pieces

Breadboard
x1

SketchBoard
x1

4-40 x 3/8” bolt
x3

4-40 nut
x3

Arduino Holder
x1

.: PUTTING IT TOGETHER :.

.: For an introduction to what an Arduino is, visit :.
.: http://ardx.org/INTR :.

#4 x 1/16”
Spacer
x3

Use at least 2
bolt / spacer / nut
assemblies to
secure the Arduino

Make note of the polarity
when mounting the
breadboard: the red line
has to be facing left.

02 INST
installing

(software and hardware)

click "Tools" > "Ports" > select the port
assigned to your Arduino

This confirms your Arduino installed
correctly.

03

02 INST
installing

(software and hardware)

.: NOTE: :.
.: Encountering problems? :.

.: Would like more details? Using Linux? :.
.: http://ardx.org/LINU :.

Step 1: Download the software
Go to

http://arduino.cc/en/Main/Software
For Windows: Download the "Installer" version

For Mac: download the OSX version

Windows Mac OSX

Step 2:
Browse to the downloads folder

Run the downloaded file
arduino-1.x-windows.exe

(follow on screen instructions)

Step 3:
Plug in your Arduino

Follow steps for installation, when prompted
for drivers browse to

C:\Program Files (x86)\Arduino\drivers"
and use the drivers in this folder

Step 4:
Run Arduino software

by clicking the Start button
type in Arduino and press enter

Step 5:

.: INSTALLING THE IDE :.
This is the program used to write code for the Arduino. It may
seem a little daunting at first but once you have it installed and

start playing around, its secrets will reveal themselves.

Step 4: Plug In Your Arduino
Plug your Arduino in:

Using the included USB cable, plug your Arduino
board into a free USB port.

Finished

Step 2: Open The .dmg
Open (mount)

arduino-1 -macosx.zip (.r r- version #)

Step 3: Copy The Application
Go to

"Arduino" (in the devices section of finder)

Move
"Arduino" Application to the

"Applications" folder

04

03 PROG
programming

primer

.: A Small Programming Primer:.

STRUCTURE

SYNTAX

ARDUINO PROGRAMMING IN BRIEF

VARIABLES

// (single line comment)

It is often useful to write notes

to yourself as you go along

about what each line of code

does. To do this type two

forward slashes and everything

until the end of the line will be

ignored by your program.

{ } (curly brackets)

Used to define when a block

of code starts and ends (used

in functions as well as loops).

void setup(){ }
All the code between the two

curly brackets will be run once

when your Arduino program

first runs.

Each Arduino program

(often called a sketch) has

two required functions

(also called routines).

void loop(){ }
This function is run after setup

has finished. After it has run

once it will be run again, and

again, until power is removed.

; (semicolon)

Each line of code must be

ended with a semicolon (a

missing semicolon is often

the reason for a program

refusing to compile).

One of the slightly

frustrating elements of C is

its formatting requirements

(this also makes it very

powerful). If you remember

the following you should be

alright.

/* */(multi line comment)

If you have a lot to say you can

span several lines as a

comment. Everything between

these two symbols will be

ignored in your program.

A program is nothing more

than instructions to move

numbers around in an

intelligent way. Variables are

used to do the moving.

long (long)
Used when an integer is not

large enough. Takes 4 bytes (32

bits) of RAM and has a range

between -2,147,483,648 and

2,147,483,647.

int (integer)
The main workhorse, stores a

number in 2 bytes (16 bits).

Has no decimal places and will

store a value between -32,768

and 32,767.

boolean (boolean)
A simple True or False

variable. Useful

because it only

uses one bit of

RAM.

char (character)
Stores one character using the

ASCII code (ie 'A' = 65). Uses

one byte (8 bits) of RAM. The

Arduino handles strings as an

array of char’s.

float (float)
 Used for floating point math

(decimals). Takes 4 bytes (32

bits) of RAM and has a range

between -3.4028235E+38

and 3.4028235E+38.

The Arduino is programmed in the C language. This is a quick little primer targeted at people

who have a little bit of programing experience and just need a briefing on the idiosyncracies of C

and the Arduino IDE. If you find the concepts a bit daunting, don't worry, you can start going

through the circuits and pick up most of it along the way. For a more in-depth intro, the

Arduino.cc website is a great resource.

05

03 PROG
programming

primer

MATHS OPERATORS

COMPARISON OPERATORS

CONTROL STRUCTURE

DIGITAL

ANALOG

.:For a full programming reference visit:.
http://ardx.org/PROG

= (assignment) makes something equal to something else (eg. x

= 10 * 2 (x now equals 20))
% (modulo) gives the remainder when one number is divided by

another (ex. 12 % 10 (gives 2))
+ (addition)
- (subtraction)
* (multiplication)
/ (division)

Operators used for

manipulating numbers.

(they work like simple

maths).

== (equal to) (eg. 12 == 10 is FALSE or 12 == 12 is TRUE)

!= (not equal to) (eg. 12 != 10 is TRUE or 12 != 12 is FALSE)

< (less than) (eg. 12 < 10 is FALSE or 12 < 12 is FALSE or 12 < 14 is TRUE)

> (greater than) (eg. 12 > 10 is TRUE or 12 > 12 is FALSE or 12 > 14 is

FALSE)

Operators used for

logical comparison.

if(condition){ }
else if(condition){ }
else { }

This will execute the code between

the curly brackets if the condition

is true, and if not it will test the

else if condition if that is also

false the else code will execute.

Programs are reliant on

controlling what runs

next, here are the basic

control elements (there

are many more online).

for(int i = 0; i <
#repeats; i++){ }

Used when you would like to

repeat a chunk of code a number

of times (can count up i++ or

down i-- or use any variable)

digitalWrite(pin, value);

Once a pin is set as an OUTPUT,

it can be set either HIGH (pulled

to +5 volts) or LOW (pulled to

ground).

pinMode(pin, mode);

Used to set a pin's mode, pin

is the pin number you would

like to address 0-19 (analog 0-

5 are 14-19). The mode can

either be INPUT or OUTPUT.

int digitalRead(pin);

Once a pin is set as an INPUT

you can use this to return

whether it is HIGH (pulled to

+5 volts) or LOW (pulled to

ground).

int analogWrite(pin,
 value);
Some of the Arduino's pins support
pulse width modulation (3, 5, 6, 9, 10,
11). This turns the pin on and off very
quickly making it act like an analog
output. The value is any number
between 0 (0% duty cycle ~0v) and
255 (100% duty cycle ~5 volts).

The Arduino is a digital

machine but it has the ability

to operate in the analog

realm (through tricks).

Here's how to deal with

things that aren't digital.

int analogRead(pin);

When the analog input pins are set

to input you can read their voltage.

A value between 0 (for 0

volts) and 1023 (for

5 volts) will be

returned.

06

04 ELEC
electronics

primer

.: A Small Electronics Primer:.

ELECTRONICS IN BRIEF

COMPONENT DETAILS

What it Does:

Spins when a current is passed through it.

Identifying:

This one is easy, it looks like a motor.

Usually a cylinder with a shaft coming out

of one end.

No. of Leads:

2

Things to watch out for:

 - Using a transistor or relay that is rated

for the size of motor you're using.

More Details:

 http://ardx.org/MOTO

What it Does:

Takes a timed pulse and converts it into

an angular position of the output shaft.

Identifying:

A plastic box with 3 wires coming out one

side and a shaft with a plastic horn out

the top.

No. of Leads:

3 (Ground, Voltage, Signal)

Things to watch out for:

 - The plug is not polarized so make sure

it is plugged in the right way.

More Details:

 http://ardx.org/SERV

No previous electronic experience is required to have fun with this kit. Here are a few details

about each component to make identifying, and perhaps understanding them, a bit easier. If

at any point you are worried about how a component is used or why it's not working the

internet offers a treasure trove of advice, or we can be contacted at help@solarbotics.com

What it Does:

Emits light when a small current is

passed through it. (only in one direction)

Identifying:

Looks like a mini light bulb.

No. of Leads:

2 (one longer, this one connects to positive)

Things to watch out for:

 - Will only work in one direction

 - Requires a current limiting resistor

More Details:

 http://ardx.org/LED

What it Does:

Restricts the amount of current that can

flow through a circuit.

Identifying:

Cylinder with wires extending from either

end. The value is displayed using a color

coding system (for details see next page)

No. of Leads:

2

Things to watch out for:

 - Easy to grab the wrong value (double

check the colors before using)

More Details:

 http://ardx.org/RESI

What it Does:

Uses a small current to switch or amplify a

much larger current.

Identifying:

Comes in many different packages but you

can read the part number off the package.
(P2N2222AG in this kit and find a datasheet online)

No. of Leads:

3 (Emitter, Base, Collector)

Things to watch out for:

 - Plugging in the right way round (also a

current limiting resistor is often needed on the base pin)

More Details:

 http://ardx.org/TRAN

What it Does:

The electronic equivalent of a one way

valve. Allowing current to flow in one

direction but not the other.

Identifying:

Usually a cylinder with wires extending from

either end. (and an off center line indicating polarity)

No. of Leads:

2 (stripe connects to negative)

Things to watch out for:

 - Will only work in one direction (current will

flow if end with the line is connected to ground)

More Details:

 http://ardx.org/DIOD

DC Motor

Hobby Servo

LED
(Light Emitting Diode)

Resistors

Transistor

Diode

07

04 ELEC
electronics

primer

0 - Black
1 - Brown
2 - Red
3 - Orange
4 - Yellow

5 - Green
6 - Blue
7 - Purple
8 - Grey
9 - White

20% - none
10% - silver
5% - gold

first digit

second digit

of zeros

tolerance

Examples:
green-blue-brown - 560 ohms
red-red-red - 2 200 ohms (2.2k)
brown-black-orange - 10 000 ohms (10k)

RESISTOR COLOR CODE LEAD CLIPPING

COMPONENT DETAILS (CONT.)

What it Does:

A pulse of current will cause it to click. A

stream of pulses will cause it to emit a

tone.

Identifying:

In this kit it comes in a little black barrel,

but sometimes they are just a gold disc.

No. of Leads:

2

Things to watch out for:

 - Difficult to misuse.

More Details:

 http://ardx.org/PIEZ

What it Does:

Produces a variable resistance dependant

on the angular position of the shaft.

Identifying:

They can be packaged in many different

form factors, look for a dial to identify.

No. of Leads:

3

Things to watch out for:

 - Accidentally buying logarithmic scale.

More Details:

 http://ardx.org/POTE

What it Does:

Packages any range of complicated

electronics inside an easy to use package.

Identifying:

The part ID is written on the outside of the

package. (this sometimes requires a lot of

light or a magnifying glass to read).

No. of Leads:

2 - 100s (in this kit there is one with 3 (TMP36) and

one with 16 (74HC595)

Things to watch out for:

 - Proper orientation. (look for marks showing pin 1)

More Details:

 http://ardx.org/ICIC

What it Does:

Produces a variable resistance dependant

on the amount of incident light.

Identifying:

Usually a little disk with a clear top and a

curvy line underneath.

No. of Leads:

2

Things to watch out for:

 - Remember it needs to be in a voltage

divider before it provides a useful input.

More Details:

 http://ardx.org/PHOT

What it Does:

Completes a circuit when it is pressed.

Identifying:

A little square with leads out the bottom

and a button on the top.

No. of Leads:

4 (Legs across from each other connected together)

Things to watch out for:

 - these are almost square so can be

inserted 90 degrees off angle.

More Details:

 http://ardx.org/BUTT

Some components in this kit come with very long wire
leads. To make them more compatible with a breadboard
a couple of changes are required.
LEDs:
Clip the leads so the long lead is ~10mm (3/8”) long and
the short one is ~7mm (9/32”).
Resistors:
Bend the leads down so they are 90 degrees to the
cylinder. Then snip them so they are ~6mm
(1/4”) long.
Other Components:
Other components may need clipping.
Use your discretion when doing so.

Piezo Element

Potentiometer

IC (Integrated Circuit)

Photo Resistor

Pushbutton

08

CIRC-01

WHAT WE’RE DOING:

.:Getting Started:.

.:(Blinking LED):.

Arduino
pin 13

LED
(light emitting diode)

resistor (560ohm)

(green-blue-brown)

gnd
(ground) (-)

.:download:.
breadboard layout sheet

http://ardx.org/BBLS01
.:view:.

assembly video
http://ardx.org/VIDE01

The Internet

longer lead
+

THE CIRCUIT:

Schematic

LEDs (light emitting diodes) are used in all sorts of clever things

which is why we have included them in this kit. We will start off

with something very simple, turning one on and off, repeatedly,

producing a pleasant blinking effect. To get started, grab the parts

listed below, pin the layout sheet to your breadboard and then plug

everything in. Once the circuit is assembled you'll need to upload the program. To do this plug the

Arduino board into your USB port. Then select the proper port in Tools > Serial Port > (the

comm port of your Arduino). Next upload the program by going to File > Upload (ctrl+U).

Finally, bask in the glory and possibility that controlling lights offers.

If you are having trouble uploading, a full troubleshooting guide can be found here: http://ardx.org/TRBL

Wire
10mm LED
x1

560 Ohm Resistor
Green-Blue-Brown
x1

2 Pin Header
x4

CIRC-01
Breadboard Sheet
x1

Parts:

09

CIRC-01
File > Examples > 1.Basic > Blink
(example from the great arduino.cc site check it out for other ideas)

/* Blink
 * Turns on an LED on for one second, then off for one second,
 * repeatedly.
 * Created 1 June 2005 By David Cuartielles
 * http://arduino.cc/en/Tutorial/Blink
 * based on an original by H. Barragan for the Wiring i/o board
 */

int ledPin = 13; // LED connected to digital pin 13

// The setup() method runs once, when the sketch starts
void setup() { // initialize the digital pin as an output:
 pinMode(ledPin, OUTPUT); }

// the loop() method runs over and over again,
// as long as the Arduino has power
void loop() {
 digitalWrite(ledPin, HIGH); // set the LED on
 delay(1000); // wait for a second
 digitalWrite(ledPin, LOW); // set the LED off
 delay(1000); // wait for a second
}

More details, where to buy more parts, where to ask more questions.

http://ardx.org/CIRC01

Still No Success?
A broken circuit is no fun, send

us an e-mail and we will get

back to you as soon as we can.

help@solarbotics.com

Program Not Uploading
 This happens sometimes,

the most likely cause is a

confused serial port, you

can change this in

tools>serial port>

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

LED Not Lighting Up?
LEDs will only work in one direction.

Try taking it out and reversing it. No

need to worry - installing it

backwards does no permanent

harm, because the LED prevents

power from flowing the wrong way.

Also, make sure you are connecting

to pin 13!

Changing the pin:
The LED is connected to pin 13 but we can use any of

the Arduino’s pins. To change it take the wire plugged

into pin 13 and move it to a pin of your choice (from 0-

13) (you can also use analog 0-5, analog 0 is 14...)

Then in the code change the line:
 int ledPin = 13; -> int ledPin = newpin;

Then upload the sketch: (ctrl-u)

Change the blink time:
Unhappy with one second on one second off?

In the code change the lines:
 digitalWrite(ledPin, HIGH);

 delay(time on); //(seconds * 1000)
 digitalWrite(ledPin, LOW);

 delay(time off); //(seconds * 1000)

Control the brightness:
Along with digital (on/off) control the Arduino can control

some pins in an analog (brightness) fashion. (more details on

this in later circuits). To play around with it.

Change the LED to pin 9: (also change the wire)
ledPin = 13; -> int ledPin = 9;

Replace the code inside the { }'s of loop() with this:

analogWrite(ledPin, new number);

(new number) = any number between 0 and 255.
0 = off, 255 = on, in between = different brightness

Fading:
We will use another included example program. To open go to

File > Examples > 3.Analog > Fading

Then upload to your board and watch as the LED fades in and

then out.

CODE (no need to type everything in, just click)

Wire

10

CIRC-02
.:8 LED Fun:.

.:Multiple LED’s:.

5mm Green LED
x8

560 Ohm Resistor
Green-Blue-Brown
x8

2 Pin Header
x4

CIRC-02
Breadboard Sheet
x1

.:download:.
breadboard layout sheet

http://ardx.org/BBLS02
.:view:.

assembly video
http://ardx.org/VIDE02

LED

resistor
560ohm

gnd

pin 3pin 2 pin 4 pin 5

LED

resistor
560ohm

gnd

pin 7pin 6 pin 8 pin 9

Parts:

The Internet

THE CIRCUIT:

Schematic

WHAT WE’RE DOING:
We have caused one LED to blink, now it's time to up the

stakes. Lets connect eight. We'll also have an opportunity to

stretch the Arduino a bit by creating various lighting

sequences. This circuit is also a nice setup to experiment with

writing your own programs and getting a feel for how the Arduino works.

Along with controlling the LEDs we start looking into a few simple programming methods to

keep your programs small.

for() loops - used when you want to run a piece of code several times.

arrays[] - used to make managing variables easier (it's a group of variables).

11

CIRC-02
Download the Code from (http://ardx.org/CODE02)
(and then copy the text and paste it into an empty Arduino Sketch)

More details, where to buy more parts, where to ask more questions.

http://ardx.org/CIRC02

//LED Pin Variables
int ledPins[] = {2,3,4,5,6,7,8,9};
 //An array to hold the
 //pin each LED is connected to
 //i.e. LED #0 is connected to pin 2

void setup()
{
 for(int i = 0; i < 8; i++){
 //this is a loop and will repeat eight times
 pinMode(ledPins[i],OUTPUT);
 //we use this to set LED pins to output
 }
}

void loop() // run over and over again
{
 oneAfterAnotherNoLoop();
 //this will turn on each LED one by
 //one then turn each oneoff
 //oneAfterAnotherLoop();
 //this does the same as oneAfterAnotherNoLoop
 //but with much less typing
 //oneOnAtATime();
 //inAndOut();
}

/*
 * oneAfterAnotherNoLoop() - Will light one then
 * delay for delayTime then light the next LED it

* will then turn them off

void oneAfterAnotherNoLoop(){
 int delayTime = 100;
 //the time (in milliseconds) to pause
 //between LEDs
 digitalWrite(ledPins[0], HIGH); //Turns on LED #0
 //(connected to pin 2)
 delay(delayTime); //waits delayTime milliseconds
 ...
 ...
 digitalWrite(ledPins[7], HIGH); //Turns on LED #7
 //(connected to pin 9)
 delay(delayTime); //waits delayTime milliseconds
//Turns Each LED Off
 digitalWrite(ledPins[7], LOW); //Turns off LED #7
 delay(delayTime); //waits delayTime milliseconds
 ...

-----more code in the downloadable version------

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

Operating out of sequence
With eight wires it's easy to cross

a couple. Double check that the

first LED is plugged into pin 2 and

each pin there after.

Some LEDs Fail to Light
 It is easy to insert an LED

backwards. Check the LEDs

that aren't working and ensure

they the right way around.

Switching to loops:

In the loop() function there are 4 lines. The last

three all start with a '//'. This means the line is

treated as a comment (not run). To switch the

program to use loops change the void loop()

code to:
 //oneAfterAnotherNoLoop();
 oneAfterAnotherLoop();
 //oneOnAtATime();
 //inAndOut();

Upload the program, and notice that nothing has

changed. You can take a look at the two

functions, each does the same thing, but use

different approaches (hint: the second one uses

a for loop).

Extra animations:
Tired of this animation? Then try the other two

sample animations. Uncomment their lines and upload

the program to your board and enjoy the new light

animations. (delete the slashes in front of row 3 and then 4)

Testing out your own animations:
Jump into the included code and start changing

things. The main point is to turn an LED on use

digitalWrite(pinNumber, HIGH); then to turn

it off use digitalWrite(pinNumber, LOW); .

Type away, regardless of what you change you won't

break anything.

Starting Afresh
Its easy to accidentally

misplace a wire without

noticing. Pulling everything out

and starting with a fresh slate

is often easier than trying to

track down the problem.

CODE (no need to type everything in, just click)

12

CIRC-03
.:Spin Motor Spin:.

.:Transistor & Motor:.

Wire
Transistor
P2N2222AG (TO92)
x1

2.2k Ohm Resistor
Red-Red-Red
x1

2 Pin Header
x4

CIRC-03
Breadboard Sheet
x1

Toy Motor
x1

Arduino
pin 9

resistor
(2.2kohm)

gnd
(ground) (-)

Collector Emitter
Base

Motor

+5 volts

Transistor
 P2N2222AG

The transistor will have
P2N2222AG printed on it
(some variations will have
the pin assignment reversed)

Diode
(1N4001)
x1

Diode

.:download:.
breadboard layout sheet

http://ardx.org/BBLS03
.:view:.

assembly video
http://ardx.org/VIDE03

Parts:

The Internet

THE CIRCUIT:

Schematic

WHAT WE’RE DOING:
The Arduino's pins are great for directly controlling small electric

items like LEDs. However, when dealing with larger items (like a toy

motor or washing machine), an external transistor is required. A

transistor is incredibly useful. It switches a lot of current using a

much smaller current. A transistor has 3 pins. For a negative type (NPN)

transistor, you connect your load to collector and the emitter to ground. Then when a small current

flows from base to the emitter, a current will flow through the transistor and your motor will spin

(this happens when we set our Arduino pin HIGH). There are literally thousands of different types of

transistors, allowing every situation to be perfectly matched. We have chosen a P2N2222AG a rather

common general purpose transistor. The important factors in our case are that its maximum voltage

(40v) and its maximum current (600 milliamp) are both high enough for our toy motor (full details

can be found on its datasheet http://ardx.org/2222).

(The 1N4001 diode is acting as a flyback diode. For details on why it’s there visit: http://ardx.org/4001)

.:NOTE: if your Arduino is resetting you need to install the optional capacitor:.

13

CIRC-03

More details, where to buy more parts, where to ask more questions.

http://ardx.org/CIRC03

Download the Code from (http://ardx.org/CODE03)
(then simply copy the text and paste it into an empty Arduino Sketch)

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

Still No Luck?
If you sourced your own

motor, double check that it will

work with 5 volts and that it

does not draw too much

power.

Motor Not Spinning?
If you sourced your own

transistor, double check with

the data sheet that the pinout

is compatible with a P2N2222A

(many are reversed).

Controlling speed:
We played with the Arduino's ability to control the

brightness of an LED earlier now we will use the same

feature to control the speed of our motor. The Arduino

does this using something called Pulse Width

Modulation (PWM). This relies on the Arduino's ability to

operate really, really fast. Rather than directly

controlling the voltage coming from the pin the Arduino

will switch the pin on and off very quickly. In the

computer world this is going from 0 to 5 volts many

times a second, but in the human world we see it as a

voltage. For example if the Arduino is PWM'ing at 50%

we see the light dimmed 50% because our eyes are not

quick enough to see it flashing on and off. The same

feature works with transistors. Don't believe me? Try it

out.

In the loop() section change it to this
// motorOnThenOff();
 motorOnThenOffWithSpeed();
// motorAcceleration();
Then upload the program. You can change the speeds by

changing the variables onSpeed and offSpeed.

Accelerating and decelerating:
Why stop at two speeds, why not accelerate and decelerate

the motor. To do this simply change the loop() code to read
// motorOnThenOff();
// motorOnThenOffWithSpeed();
 motorAcceleration();

Then upload the program and watch as your motor slowly

accelerates up to full speed then slows down again. If you

would like to change the speed of acceleration change the

variable delayTime (larger means a longer acceleration time).

Still Not Working?
Sometimes the Arduino board

will disconnect from the

computer. Try un-plugging and

then re-plugging it into your

USB port.

int motorPin = 9; //pin the motor is connected to

void setup() //runs once
{
 pinMode(motorPin, OUTPUT);
}

void loop() // run over and over again
{
 motorOnThenOff();
 //motorOnThenOffWithSpeed();
 //motorAcceleration();
}

/*
 * motorOnThenOff() - turns motor on then off
 * (notice this code is identical to the code we

used for
 * the blinking LED)
 */
void motorOnThenOff(){
 int onTime = 2500; //on time
 int offTime = 1000; //off time
 digitalWrite(motorPin, HIGH);
 // turns the motor On
 delay(onTime); // waits for onTime milliseconds
 digitalWrite(motorPin, LOW);
 // turns the motor Off
 delay(offTime);// waits for offTime milliseconds
}

void motorOnThenOffWithSpeed(){
 int onSpeed = 200;// a number between
 //0 (stopped) and 255 (full speed)
 int onTime = 2500;
 int offSpeed = 50;// a number between
 //0 (stopped) and 255 (full speed)
 int offTime = 1000;
 analogWrite(motorPin, onSpeed);
 // turns the motor On
 delay(onTime); // waits for onTime milliseconds
 analogWrite(motorPin, offSpeed);
 // turns the motor Off
 delay(offTime); // waits for offTime milliseconds
}

void motorAcceleration(){
 int delayTime = 50; //time between each speed step
 for(int i = 0; i < 256; i++){
 //goes through each speed from 0 to 255
 analogWrite(motorPin, i); //sets the new speed
 delay(delayTime);// waits for delayTime milliseconds
 }
 for(int i = 255; i >= 0; i--){
 //goes through each speed from 255 to 0
 analogWrite(motorPin, i); //sets the new speed
 delay(delayTime);//waits for delayTime milliseconds
 }
}

CODE (no need to type everything in, just click)

14

CIRC-04
.:A Single Servo:.

.:Servos:.

Wire
3 Pin Header
x1

Mini Servo
x1

2 Pin Header
x4

CIRC-04
Breadboard Sheet
x1

Arduino
pin 9

gnd
(ground) (-)

gnd
(black/
brown)

signal
(orange)

+5v
(red)

Mini Servo

+5 volts
(5V)

.:download:.
breadboard layout sheet

http://ardx.org/BBLS04
.:view:.

assembly video
http://ardx.org/VIDE04

WHAT WE’RE DOING:

Parts:

The Internet

THE CIRCUIT:

Schematic

Spinning a motor is good fun but when it comes to projects

where motion control is required they tend to leave us

wanting more. The answer? Hobby servos. They are mass

produced, widely available and cost anything from a couple of

dollars to hundreds. Inside is a small gearbox (to make the movement more powerful) and

some electronics (to make it easier to control). A standard servo is positionable from 0 to

180 degrees. Positioning is controlled through a timed pulse, between 1.25 milliseconds (0

degrees) and 1.75 milliseconds (180 degrees) (1.5 milliseconds for 90 degrees). Timing

varies between manufacturer. If the pulse is sent every 25-50 milliseconds the servo will run

smoothly. One of the great features of the Arduino is it has a software library that allows

you to control twelve servos using a single line of code.

15

CIRC-04
File > Examples > Servo > Sweep
(example from the great arduino.cc site check it out for other great ideas)

More details, where to buy more parts, where to ask more questions.

http://ardx.org/CIRC04

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

Still Not Working
A mistake we made a time or

two was simply forgetting to

connect the power (red and

brown wires) to +5 volts and

ground.

Servo Not Twisting?
Even with colored wires it is

still shockingly easy to plug a

servo in backwards. This might

be the case.

Potentiometer control:
We have yet to experiment with inputs but if you would like

to read ahead, there is an example program File >

Examples > Servo > Knob. This uses a potentiometer

(CIRC08) to control the servo. You can find instructions online

here: http://ardx.org/KNOB

Self timing:
While it is easy to control a servo using the Arduino's included

library sometimes it is fun to figure out how to program

something yourself. Try it. We're controlling the pulse directly

so you could use this method to control servos on any of the

Arduino's 20 available pins (you need to highly optimize this

code before doing that).

 int servoPin = 9;

void setup(){
 pinMode(servoPin,OUTPUT);
}

void loop() {
 int pulseTime = 2100; //(the number of microseconds
 //to pause for (1500 90 degrees
 // 900 0 degrees 2100 180 degrees)
 digitalWrite(servoPin, HIGH);
 delayMicroseconds(pulseTime);
 digitalWrite(servoPin, LOW);
 delay(25);
}

Great ideas:
Servos can be used to do all sorts of great things, here are a few of

our favorites.

Xmas Hit Counter
http://ardx.org/XMAS

Open Source Robotic Arm (uses a servo controller as well as the Arduino)

http://ardx.org/RARM

Servo Walker
http://ardx.org/SEWA

// Sweep
// by BARRAGAN <http://barraganstudio.com>

#include <Servo.h>
Servo myservo; // create servo object to control a servo
int pos = 0; // variable to store the servo position

void setup() {
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}

void loop() {
 for(pos = 0; pos < 180; pos += 1) // goes from 0 degrees to 180 degrees
 { // in steps of 1 degree
 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
 for(pos = 180; pos>=1; pos-=1) // goes from 180 degrees to 0 degrees
 {
 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position
 }
}

Fits and Starts

If the servo begins moving then

twitches, and there's a flashing

light on your Arduino board, the

power supply you are using is

not quite up to the challenge.

Using a fresh battery instead of

USB should solve this problem.

CODE (no need to type everything in, just click)

16

CIRC-05 .:8 More LEDs:.
.:74HC595 Shift Register:.

Wire

Shift Register
74HC595
x1

560 Ohm Resistor
Green-Blue-Brown
x8

2 Pin Header
x4

CIRC-05
Breadboard Sheet
x1

Red LED
x8

LE
D

re
si

st
o
r

(5
6
0
o
h
m

)

g
n
d

(g
ro

u
n
d
)

(-
)

pin
4

pin
3

pin
2

0

1
2

3

4

5

6

7

data
clock
latch

+5V

gnd

74HC595

.:download:.
breadboard layout sheet

http://ardx.org/BBLS05
.:view:.

assembly video
http://ardx.org/VIDE05

WHAT WE’RE DOING:

Parts:

The Internet

THE CIRCUIT:

Schematic

Time to start playing with chips, or integrated circuits (ICs) as they like to

be called. The external packaging of a chip can be very deceptive. For

example, the chip on the Arduino board (a microcontroller) and the one we

will use in this circuit (a shift register) look very similar but are in fact rather

different. The price of the ATMega chip on the Arduino board is a few dollars

while the 74HC595 is a couple dozen cents. It's a good introductory chip, and once you're comfortable playing

around with it and its datasheet (available online http://ardx.org/74HC595) the world of chips will be your oyster.

The shift register (also called a serial to parallel converter), will give you an additional 8 outputs (to control LEDs

and the like) using only three Arduino pins. They can also be linked together to give you a nearly unlimited

number of outputs using the same four pins. To use it you “clock in” the data and then lock it in (latch it). To do

this you set the data pin to either HIGH or LOW, pulse the clock, then set the data pin again and pulse the clock

repeating until you have shifted out 8 bits of data. Then you pulse the latch and the 8 bits are transferred to the

shift registers pins. It sounds complicated but is really simple once you get the hang of it.

(for a more in depth look at how a shift register works, visit: http://ardx.org/SHIF)

There is a half moon
cutout, this goes at the top

17

CIRC-05

More details, where to buy more parts, where to ask more questions.

http://ardx.org/CIRC05

Download the Code from (http://ardx.org/CODE05)
(copy the text and paste it into an empty Arduino Sketch)

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

Not Quite Working
 Sorry to sound like a broken

record but it is probably

something as simple as a

crossed wire.

The Arduino’s power

LED goes out

 This happened to us a couple

of times, it happens when the

chip is inserted backwards. If

you fix it quickly nothing will

break.

Doing it the hard way:
An Arduino makes rather complex actions very easy, shifting out data is

one of these cases. However one of the nice features of an Arduino is

you can make things as easy or difficult as you like. Let's try an

example of this. In your loop switch the line:

updateLEDs(i) -> updateLEDsLong(i);
Upload the program and notice nothing has changed. If you look at the

code you can see how we are communicating with the chip one bit at a

time. (for more details http://ardx.org/SPI).

Controlling individual LEDs:
Time to start controlling the LEDs in a similar method as we did in

CIRC02. As the eight LED states are stored in one byte (an 8 bit value)

for details on how this works try http://ardx.org/BINA. An Arduino is

very good at manipulating bits and there are an entire set of operators

that help us out. Details on bitwise maths (http://ardx.org/BITW).

Our implementation.
Replace the loop() code with
 int delayTime = 100; //the number of milliseconds
 //to delay

 //between LED updates
 for(int i = 0; i < 8; i++){
 changeLED(i,ON);
 delay(delayTime);
 }
 for(int i = 0; i < 8; i++){
 changeLED(i,OFF);
 delay(delayTime);
 }
Uploading this will cause the lights to light up one after another and then off

in a similar manner. Check the code and wikipedia to see how it works, or

shoot us an e-mail if you have questions.

More animations:
Now things get more interesting. If you look back to the code from CIRC02 (8

LED Fun) you see we change the LEDs using digitalWrite(led, state), this is

the same format as the routine we wrote changeLED(led, state). You can use

the animations you wrote for CIRC02 by copying the code into this sketch and

changing all the digitalWrite()'s to changeLED()'s. Powerful? Very. (you'll also

need to change a few other things but follow the compile errors and it works

itself out).

Frustration?

Shoot us an e-mail, this circuit

is both simple and complex at

the same time. We want to

hear about problems you have

so we can address them in

future editions.

 help@oomlout.com

//Pin Definitions
//The 74HC595 uses a protocol called SPI
//Which has three pins
int data = 2;
int clock = 3;
int latch = 4;

void setup() //runs once
{
 pinMode(data, OUTPUT);
 pinMode(clock, OUTPUT);
 pinMode(latch, OUTPUT); }

void loop() // run over and over again
{
 int delayTime = 100;
 //delay between LED updates
 for(int i = 0; i < 256; i++){
 updateLEDs(i);
 delay(delayTime); }
}

/*
 * updateLEDs() - sends the LED states set
 * in value to the 74HC595 sequence
 */
void updateLEDs(int value){

 digitalWrite(latch, LOW);

//Pulls the chips latch low
 shiftOut(data, clock, MSBFIRST, value);
 //Shifts out 8 bits to the shift register

digitalWrite(latch, HIGH);
 //Pulls the latch high displaying the data
}

 ---------- More Code Online ----------

CODE (no need to type everything in, just click)

Arduino
pin 9

gnd
(ground) (-)

Piezo
Element

18

CIRC-06
.:Music:.

.:Piezo Elements:.

Wire

Piezo Element
x1

2 Pin Header
x4

CIRC-06
Breadboard Sheet
x1

.:download:.
breadboard layout sheet

http://ardx.org/BBLS06
.:view:.

assembly video
http://ardx.org/VIDE06

The Internet

Schematic

WHAT WE’RE DOING:

Parts:

The Internet

THE CIRCUIT:

To this point we have controlled light, motion, and

electrons. Let's tackle sound next. But sound is an

analog phenomena, how will our digital Arduino cope?

We will once again rely on its incredible speed which will let it

mimic analog behavior. To do this, we will attach a piezo element to one of the

Arduino's digital pins. A piezo element makes a clicking sound each time it is pulsed

with current. If we pulse it at the right frequency (for example 440 times a second to

make the note middle A) these clicks will run together to produce notes. Let's get to

experimenting with it and get your Arduino playing "Twinkle Twinkle Little Star".

19

CIRC-06

More details, where to buy more parts, where to ask more questions.

http://ardx.org/CIRC06

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

Download the Code from (http://ardx.org/CODE06)
(copy the text and paste it into an empty Arduino Sketch)

Can't Think While the

Melody is Playing?
Just pull up the piezo element

whilst you think, upload your

program then plug it back in.

No Sound
Given the size and shape of

the piezo element it is easy to

miss the right holes on the

breadboard. Try double

checking its placement.

Playing with the speed:
The timing for each note is calculated based on

variables, as such we can tweak the sound of each note

or the timing. To change the speed of the melody you

need to change only one line.
int tempo = 300; ---> int tempo = (new #)
Change it to a larger number to slow the melody down,

or a smaller number to speed it up.
Tuning the notes:
If you are worried about the notes being a little out of

tune this can be fixed as well. The notes have been

calculated based on a formula in the comment block at

the top of the program. But to tune individual notes just

adjust their values in the tones[] array up or down

until they sound right. (each note is matched by its

name in the names[] (array ie. c = 1915)

char names[] = { 'c', 'd', 'e', 'f', 'g', 'a', 'b',
'C' };
int tones[] = { 1915, 1700, 1519, 1432, 1275, 1136,
1014, 956 };

Composing your own melodies:
The program is pre-set to play 'Twinkle Twinkle Little Star'

however the way it is programmed makes changing the song

easy. Each song is defined in one int and two arrays, the int

length defines the number of notes, the first array

notes[] defines each note, and the second beats[]

defines how long each note is played. Some Examples:
 Twinkle Twinkle Little Star
 int length = 15;
 char notes[] = {"ccggaagffeeddc "};
 int beats[] = { 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,
 1, 1, 2, 4 };

 Happy Birthday (first line)
 int length = 13;
 char notes[] = {"ccdcfeccdcgf "};
 int beats[] = {1,1,1,1,1,2,1,1,1,1,1,2,4};

Tired of Twinkle Twinkle

Little Star?
The code is written so you can

easily add your own songs,

check out the code below to

get started.

/* Melody
 * (cleft) 2005 D. Cuartielles for K3
 *
 * This example uses a piezo speaker to play melodies. It sends
 * a square wave of the appropriate frequency to the piezo,
 * generating the corresponding tone.
 *
 * The calculation of the tones is made following the
 * mathematical operation:
 *
 * timeHigh = period / 2 = 1 / (2 * toneFrequency)
 *
 * where the different tones are described as in the table:
 *
 * note frequency period timeHigh
 * c 261 Hz 3830 1915
 * d 294 Hz 3400 1700
 * e 329 Hz 3038 1519
 * f 349 Hz 2864 1432
 * g 392 Hz 2550 1275
 * a 440 Hz 2272 1136
 * b 493 Hz 2028 1014
 * C 523 Hz 1912 956
 *
 * http://www.arduino.cc/en/Tutorial/Melody
 */

int speakerPin = 9;
int length = 15; // the number of notes
char notes[] = "ccggaagffeeddc "; // a space represents a rest
int beats[] = { 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 4 };
int tempo = 300;

void playTone(int tone, int duration) {
 for (long i = 0; i < duration * 1000L; i += tone * 2) {
 digitalWrite(speakerPin, HIGH);
 delayMicroseconds(tone);

 digitalWrite(speakerPin,

LOW);
 delayMicroseconds(tone);
 }
}

void playNote(char note, int duration) {
 char names[] = { 'c', 'd', 'e', 'f', 'g', 'a', 'b', 'C' };
 int tones[] = { 1915, 1700, 1519, 1432, 1275, 1136, 1014, 956

};
 // play the tone corresponding to the note name
 for (int i = 0; i < 8; i++) {
 if (names[i] == note) {
 playTone(tones[i], duration);
 }
 }
}

void setup() {
 pinMode(speakerPin, OUTPUT);
}

void loop() {
 for (int i = 0; i < length; i++) {
 if (notes[i] == ' ') {
 delay(beats[i] * tempo); // rest
 } else {
 playNote(notes[i], beats[i] * tempo);
 }
 // pause between notes
 delay(tempo / 2); }
}

CODE (no need to type everything in, just click)

20

CIRC-07
.:Button Pressing:.

.:Pushbuttons:.

Wire
Pushbutton
x2

560 Ohm Resistor
Green-Blue-Brown
x1

2 Pin Header
x4

CIRC-07
Breadboard Sheet
x1

Red LED
x1

10k Ohm Resistor
Brown-Black-Orange
x2

Arduino
pin 13

LED

resistor
(560ohm)

gnd
(ground) (-)

pin 2

pushbutton

pin 3

+5 volts

Arduino

resistor
 (10k ohm)

.:download:.
breadboard layout sheet

http://ardx.org/BBLS07
.:view:.

assembly video
http://ardx.org/VIDE07

Schematic

WHAT WE’RE DOING:

Parts:

THE CIRCUIT:

The Internet

Up to this point we have focused entirely on outputs, time to

get our Arduino to listen, watch and feel. We'll start with a

simple pushbutton. Wiring up the pushbutton is simple. There is

one component, the pull up resistor, that might seem out of place.

This is included because an Arduino doesn't sense the same way we do (ie button pressed,

button unpressed). Instead it looks at the voltage on the pin and decides whether it is HIGH

or LOW. The button is set up to pull the Arduino's pin LOW when it is pressed, however, when

the button is unpressed the voltage of the pin will float (causing occasional errors). To get the

Arduino to reliably read the pin as HIGH when the button is unpressed, we add the pull up

resistor.

(note: the first example program uses only one of the two buttons)

21

CIRC-07

/*
 * Button
 * by DojoDave
 *
 * Turns on and off a light emitting diode(LED) connected to digital
 * pin 13, when pressing a pushbutton attached to pin 7.
 * http://www.arduino.cc/en/Tutorial/Button
 */
 int ledPin = 13; // choose the pin for the LED
int inputPin = 2; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

void setup() {
 pinMode(ledPin, OUTPUT); // declare LED as output
 pinMode(inputPin, INPUT); // declare pushbutton as input
}

void loop(){
 val = digitalRead(inputPin); // read input value
 if (val == HIGH) { // check if the input is HIGH
 digitalWrite(ledPin, LOW); // turn LED OFF
 } else {
 digitalWrite(ledPin, HIGH); // turn LED ON
 }
}

More details, where to buy more parts, where to ask more questions.

http://ardx.org/CIRC07

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

File > Examples > 2.Digital > Button
(example from the great arduino.cc site, check it out for other great ideas)

CODE (no need to type everything in, just click)

Light Not Fading
A bit of a silly mistake we

constantly made, when you

switch from simple on off to

fading remember to move the

LED wire from pin 13 to pin 9.

Light Not Turning On
 The pushbutton is square

and because of this it is easy

to put it in the wrong way.

Give it a 90 degree twist and

see if it starts working.

On button off button:
The initial example may be a little underwhelming (ie. I

don't really need an Arduino to do this), let’s make it a

little more complicated. One button will turn the LED on

the other will turn the LED off. Change the code to:
int ledPin = 13; // choose the pin for the LED
int inputPin1 = 3; // button 1
int inputPin2 = 2; // button 2

void setup() {
 pinMode(ledPin, OUTPUT); // declare LED as output
 pinMode(inputPin1, INPUT); // make button 1 an input
 pinMode(inputPin2, INPUT); // make button 2 an input
}

void loop(){
 if (digitalRead(inputPin1) == LOW) {
 digitalWrite(ledPin, LOW); // turn LED OFF
 } else if (digitalRead(inputPin2) == LOW) {
 digitalWrite(ledPin, HIGH); // turn LED ON
 }
}

Upload the program to your board, and start toggling the

LED on and off.

Fading up and down:
Lets use the buttons to control an analog signal. To do this

you will need to change the wire connecting the LED from pin

13 to pin 9, also change this in code.
int ledPin = 13; ----> int ledPin = 9;

Next change the loop() code to read.

int value = 0;
void loop(){
 if (digitalRead(inputPin1) == LOW) { value--; }
 else if (digitalRead(inputPin2) == LOW) { value++; }
 value = constrain(value, 0, 255);
 analogWrite(ledPin, value);
 delay(10);
}

Changing fade speed:
If you would like the LED to fade faster or slower, there is only

one line of code that needs changing;
delay(10); ----> delay(new #);

To fade faster make the number smaller, slower requires a

larger number.

Underwhelmed?
No worries these circuits are all

super stripped down to make

playing with the components

easy, but once you throw them

together the sky is the limit.

.:Twisting:.

.:Potentiometers:.

WirePotentiometer
10k ohm
x1

560 Ohm Resistor
Green-Blue-Brown
x1

2 Pin Header
x4

CIRC-08
Breadboard Sheet
x1

Green LED
x1

Arduino
pin 13

LED
(light
emitting
diode)

resistor (560ohm)

(blue-green-brown)

gnd
(ground) (-)

Potentiometer

+5 volts

Arduino
analog
pin 2

.:download:.
breadboard layout sheet

http://ardx.org/BBLS08
.:view:.

assembly video
http://ardx.org/VIDE08

Schematic

WHAT WE’RE DOING:

22

CIRC-08

Parts:

THE CIRCUIT:

The Internet

Along with the digital pins, the Arduino also has 6

pins which can be used for analog input. These

inputs take a voltage (from 0 to 5 volts) and convert

it to a digital number between 0 (0 volts) and 1023 (5 volts) (10 bits of

resolution). A very useful device that exploits these inputs is a potentiometer

(also called a variable resistor). When it is connected with 5 volts across its

outer pins the middle pin will read some value between 0 and 5 volts

dependent on the angle to which it is turned (ie. 2.5 volts in the middle). We

can then use the returned values as a variable in our program.

Not Working
Make sure you haven't

accidentally connected the

potentiometer's wiper to digital

pin 2 rather than analog pin 2.

(the row of pins beneath the

power pins)

/* Analog Input
 * Demonstrates analog input by reading an analog sensor on analog
 * pin 0 and turning on and off a light emitting diode(LED) connected to

digital pin 13.
 * The amount of time the LED will be on and off depends on the value obtained by
 * analogRead().
 * Created by David Cuartielles
 * Modified 16 Jun 2009
 * By Tom Igoe
 * http://arduino.cc/en/Tutorial/AnalogInput
 */

int sensorPin = 0; // select the input pin for the potentiometer
int ledPin = 13; // select the pin for the LED
int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {
 pinMode(ledPin, OUTPUT); //declare the ledPin as an OUTPUT
}

void loop() {
 sensorValue = analogRead(sensorPin);// read the value from the sensor
 digitalWrite(ledPin, HIGH); // turn the ledPin on
 delay(sensorValue); // stop the program for <sensorValue> milliseconds
 digitalWrite(ledPin, LOW); // turn the ledPin off:
 delay(sensorValue); // stop the program for <sensorValue> milliseconds
}

More details, where to buy more parts, where to ask more questions.

http://ardx.org/CIRC08

 Sporadically Working
This is most likely due to a

slightly dodgy connection with

the potentiometer's pins. This

can usually be conquered by

taping the potentiometer down.

Still Backward
 You can try operating the

circuit upside down.

Sometimes this helps.

23

CIRC-08

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

File > Examples > 3.Analog > AnalogInput
(example from the great arduino.cc site, check it out for other great ideas)

CODE (no need to type everything in, just click)

Threshold switching:
Sometimes you will want to switch an output when a value

exceeds a certain threshold. To do this with a

potentiometer change the loop() code to:

void loop() {
 int threshold = 512;
 if(analogRead(sensorPin) > threshold){
digitalWrite(ledPin, HIGH);}
 else{ digitalWrite(ledPin, LOW);}
}

This will cause the LED to turn on when the value is above

512 (about halfway), you can adjust the sensitivity by

changing the threshold value.
Fading:
Let’s control the brightness of an LED directly from the

potentiometer. To do this we need to first change the pin

the LED is connected to. Move the wire from pin 13 to pin

9 and change one line in the code.
int ledPin = 13; ----> int ledPin = 9;

Then change the loop code to.
 void loop() {
 int value = analogRead(potPin) / 4;
 analogWrite(ledPin, value);
 }

Upload the code and watch as your LED fades in relation to

your potentiometer spinning. (Note: the reason we divide the

value by 4 is the analogRead() function returns a value from 0

to 1023 (10 bits), and analogWrite() takes a value from 0 to

255 (8 bits))
Controlling a servo:
This is a really neat example and brings a couple of circuits

together. Wire up the servo like you did in CIRC-04, then open

the example program Knob (File > Examples > Servo >

Knob), then change one line of code:
int potpin = 0; ----> int potpin = 2;

Upload to your Arduino and then watch as the servo shaft turns

as you turn the potentiometer.

24

CIRC-09
.:Light:.

.:Photo Resistors:.

Whilst getting input from a potentiometer can be useful

for human controlled experiments, what do we use

when we want an environmentally controlled

experiment? We use exactly the same principles but instead

of a potentiometer (twist based resistance) we use a photo resistor (light based

resistance). The Arduino cannot directly sense resistance (it senses voltage) so we

set up a voltage divider (http://ardx.org/VODI). The exact voltage at the sensing

pin is calculable, but for our purposes (just sensing relative light) we can

experiment with the values and see what works for us. A low value will occur when

the sensor is well lit while a high value will occur when it is in darkness.

Wire

Photo-Resistor
x1

560 Ohm Resistor
Green-Blue-Brown
x1

2 Pin Header
x4

CIRC-09
Breadboard Sheet
x1

Green LED
x1

10k Ohm Resistor
Brown-Black-Orange
x1

Arduino
pin 13

LED

resistor
(560ohm)

gnd
(ground) (-)

+5 volts

photo
resistor

resistor
(10k ohm)

Arduino
analog
pin 0

.:download:.
breadboard layout sheet

http://ardx.org/BBLS09
.:view:.

assembly video
http://ardx.org/VIDE09

Schematic

WHAT WE’RE DOING:

Parts:

THE CIRCUIT:

The Internet

More details, where to buy more parts, where to ask more questions.

http://ardx.org/CIRC09

Download the Code from (http://ardx.org/CODE09)
(copy the text and paste it into an empty Arduino Sketch)

/*
 * A simple program that will change the
 * intensity of an LED based on the amount of
 * light incident on the photo resistor.
 *
 */

//PhotoResistor Pin
int lightPin = 0; //the analog pin the
 //photoresistor is
 //connected to.
 //the photoresistor is not
 //calibrated to any units so
 //this is simply a raw sensor

value (relative light)
//LED Pin
int ledPin = 9;//the pin the LED is connected to
 //we are controlling brightness so
 //we use one of the PWM (pulse
 //width modulation pins)

void setup()
{
 pinMode(ledPin, OUTPUT); //sets the led pin to

//output
}
 /*
 * loop() - this function will start after setup
 * finishes and then repeat
 */
void loop()
{
 int lightLevel = analogRead(lightPin); //Read the
 // lightlevel
 lightLevel = map(lightLevel, 0, 900, 0, 255);
 //adjust the value 0-900 to 0-255
 lightLevel = constrain(lightLevel, 0, 255);
 //make sure the value is between 0 and 255
 analogWrite(ledPin, lightLevel); //write the value
}

25

CIRC-09

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

CODE (no need to type everything in, just click)

Still not quite working?

You may be in a room which is

either too bright or dark. Try

turning the lights on or off to

see if this helps. Or if you have

a flashlight near by give that a

try.

It Isn't Responding to

Changes in Light

Given that the spacing of the

wires on the photo-resistor is

not standard, it is easy to

misplace it. Double check its in

the right place.

LED Remains Dark
This is a mistake we continue

to make time and time again,

if only they could make an LED

that worked both ways. Pull it

up and give it a twist.

Reverse the response:
Perhaps you would like the opposite response. Don't

worry we can easily reverse this response just change:

 analogWrite(ledPin, lightLevel); ---->

analogWrite(ledPin, 255 - lightLevel);

Upload and watch the response change.

Night light:
Rather than controlling the brightness of the LED in

response to light, let's instead turn it on or off based on

a threshold value. Change the loop() code with.
 void loop(){
 int threshold = 300;
 if(analogRead(lightPin) > threshold){
 digitalWrite(ledPin, HIGH);
 }else{
 digitalWrite(ledPin, LOW);
 }
}

Light controlled servo:
Let's use our newly found light sensing skills to control a

servo (and at the same time engage in a little bit of Arduino

code hacking). Wire up a servo connected to pin 9 (like in

CIRC-04). Then open the Knob example program (the same

one we used in CIRC-08) File > Examples > Servo >

Knob. Upload the code to your board and watch as it works

unmodified.
Using the full range of your servo:
You'll notice that the servo will only operate over a limited

portion of its range. This is because with the voltage dividing

circuit we use the voltage on analog pin 0 will not range from

0 to 5 volts but instead between two lesser values (these

values will change based on your setup). To fix this play with

the val = map(val, 0, 1023, 0, 179); line. For hints on what to

do visit http://arduino.cc/en/Reference/Map .

Wire

the chip will have
TMP36 printed on it

26

CIRC-10 .:Temperature:.
.:TMP36 Precision Temperature Sensor:.

What's the next phenomena we will measure with our

Arduino? Temperature. To do this we'll use a rather

complicated IC (integrated circuit) hidden in a package

identical to our P2N2222AG transistors. It has three easy to use

pins: ground, signal and +5 volts. It outputs 10 millivolts per

degree centigrade on the signal pin (to allow measuring temperatures below freezing there is a

500 mV offset eg. 25 C = 750 mV, 0 C = 500mV). To convert this from the digital value to ° °

degrees, we will use some of the Arduino's maths abilities. Then to display it we'll use one of

the IDE's rather powerful features, the debug window. We'll output the value over a serial

connection to display on the screen. Let's get to it.

One extra note, this circuit uses the Arduino IDE's serial monitor. To open this, first upload the

program then click the button which looks like a magnifying glass or press (ctrl + shift + m)

The TMP36 Datasheet:

http://ardx.org/TMP36

TMP36
Temperature Sensor
x1

2 Pin Header
x4

CIRC-10
Breadboard Sheet
x1

+5 volts

TMP36
(precision

temperature
sensor)

gnd
(ground) (-)

Arduino
analog
pin 0

gnd

+5v
signal

.:download:.
breadboard layout sheet

http://ardx.org/BBLS10
.:view:.

assembly video
http://ardx.org/VIDE10

Parts:

The Internet

Schematic

WHAT WE’RE DOING:

THE CIRCUIT:

27

CIRC-10

More details, where to buy more parts, where to ask more questions.

http://ardx.org/CIRC10

Download the Code from (http://ardx.org/CODE10)
(copy the text and paste it into an empty Arduino Sketch)

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

Gibberish is Displayed
This happens because the serial

monitor is receiving data at a

different speed than expected.

To fix this, click the pull-down

box that reads "*** baud" and

change it to "9600 baud".

Nothing Seems to Happen

This program has no outward

indication it is working. To see

the results you must open the

Arduino IDE's serial monitor.

(instructions on previous page)

Outputting voltage:
This is a simple matter of changing one line. Our

sensor outputs 10mv per degree centigrade so to get

voltage we simply display the result of getVoltage().

delete the line temperature = (temperature - .5) * 100;

Outputting degrees Fahrenheit:
Again this is a simple change requiring only maths. To

go degrees C ----> degrees F we use the formula:
(F = C * 1.8) + 32)

add the line
temperature =

(((temperature - .5) * 100)*1.8) + 32;
before Serial.println(temperature);

More informative output:
Let's add a message to the serial output to make what

is appearing in the Serial Monitor more informative. To

do this first revert to the original code then change:
 Serial.println(temperature);

---->
 Serial.print(temperature);

Serial.println(" degrees centigrade");

The change to the first line means when we next output it

will appear on the same line, then we add the informative

text and a new line.
Changing the serial speed:
If you ever wish to output a lot of data over the serial line

time is of the essence. We are currently transmitting at 9600

baud but much faster speeds are possible. To change this

change the line:
 Serial.begin(9600); ----> Serial.begin(115200);

Upload the sketch, turn on the serial monitor, then change

the speed from 9600 baud to 115200 baud in the pull down

menu. You are now transmitting data 12 times faster.

Temperature Value is

Unchanging

Try pinching the sensor with

your fingers to heat it up or

pressing a bag of ice against it

to cool it down.

/* ---
 * | Arduino Experimentation Kit Example Code |
 * | CIRC-10 .: Temperature :. |
 * ---
 *
 * A simple program to output the current temperature
 * to the IDE's debug window

//TMP36 Pin Variables
int temperaturePin = 0;//the analog pin the TMP36's
 //Vout pin is connected to.
 //the resolution is
 //10 mV / degree centigrade
 //(500 mV offset) to make
 //negative temperatures an

option

void setup()
{
 Serial.begin(9600); //Start the serial connection
 //with the computer.
 //to view the result open the
 //serial monitor
 //last button beneath the file
 //bar (looks like a box with an
 //antenna)
}

void loop()

// run over and over again
{
 float temperature = getVoltage(temperaturePin);
 //getting the voltage reading from the
 //temperature sensor

temperature = (temperature - .5) * 100;//converting from 10

mv
 //per degree wit 500 mV offset to
 //degrees ((voltage - 500mV) times

100)
 Serial.println(temperature); //printing the result
 delay(1000); //waiting a second
}

/*
 * getVoltage() - returns the voltage on the analog input
 * defined by pin
 */
float getVoltage(int pin){
 return (analogRead(pin) * .004882814);//converting from a 0
 //to 1023 digital range
 // to 0 to 5 volts
 //(each 1 reading equals ~ 5 millivolts)
}

CODE (no need to type everything in, just click)

28

CIRC-11
.:Larger Loads:.

.:Relays:.

This circuit is a bit of a test. We combine what we learned

about using transistors in CIRC03 to control a relay. A relay is

an electrically controlled mechanical switch. Inside the little

plastic box is an electromagnet that, when energized, causes a

switch to trip (often with a very satisfying clicking sound). You can buy relays that vary in size

from a quarter of the size of the one in this kit up to as big as a fridge, each capable of

switching a certain amount of current. They are immensely fun because there is an element of

the physical to them. While all the silicon we've played with to this point is fun sometimes you

just want to wire up a hundred switches to control something magnificent. Relays give you the

ability to dream it up then control it with your Arduino. Now to using todays technology to

control the past. (The 1N4001 diode is acting as a flyback diode. For details on why its there, visit: http://ardx.org/4001)

2 Pin Header
x4

CIRC-11
Breadboard Sheet
x1

2.2k Ohm Resistor
Red-Red-Red
x1

560 Ohm Resistor
Green-Blue-Brown
x2

Red LED
x1

Relay
(DPDT)
x1

Arduino
pin 2

resistor
(2.2kohm)

gnd
(ground) (-)

Collector Emitter

Base

+5 volts

Transistor
P2N2222AG

co
ilcomNCNO Diode

(flyback)

Diode
(1N4001)
x1

Transistor
P2N2222AG (TO92)
x1

Green LED
x1

.:download:.
breadboard layout sheet

http://ardx.org/BBLS11
.:view:.

assembly video
http://ardx.org/VIDE11

The Internet

Schematic

WHAT WE’RE DOING:

Parts:

THE CIRCUIT:

the transistor will have
P2N2222AG printed on it
(some variations will have
the pin assignment reversed)

Watch the Back-EMF Pulse
Replace the diode with an LED. You’ll see it blink each time it “snubs” the coil voltage spike when it

turns off.

Controlling a Motor
In CIRC-03 we controlled a motor using a transistor. However if you want to control a larger motor a

relay is a good option. To do this simply remove the red LED, and connect the motor in its place

(remember to bypass the 560 Ohm resistor)

Controlling Motor Direction
A bit of a complicated improvement to finish. To control the direction of spin of

a DC motor we must be able to reverse the direction of current flow through it.

To do this manually we reverse the leads. To do it electrically we require

something called an h-bridge. This can be done using a DPDT relay to control

the motor's direction, wire up the following circuit. It looks complicated but can

be accomplished using only a few extra wires. Give it a try.

No Clicking Sound
The transistor or coil portion of

the circuit isn't quite working.

Check the transistor is plugged

in the right way.

29

CIRC-11
File > Examples > 1.Basic > Blink
(example from the great arduino.cc site check it out for other great ideas)
/*
 * Blink
 *
 * The basic Arduino example. Turns on an LED on for one second,
 * then off for one second, and so on... We use pin 13 because,
 * depending on your Arduino board, it has either a built-in LED
 * or a built-in resistor so that you need only an LED.
 *
 * http://www.arduino.cc/en/Tutorial/Blink
 */

int ledPin = 2; // *********** CHANGE TO PIN 2 ************

void setup() // run once, when the sketch starts
{
 pinMode(ledPin, OUTPUT); // sets the digital pin as output
}

void loop() // run over and over again
{
 digitalWrite(ledPin, HIGH); // sets the LED on
 delay(1000); // waits for a second
 digitalWrite(ledPin, LOW); // sets the LED off
 delay(1000); // waits for a second
}

More details, where to buy more parts, where to ask more questions.

http://ardx.org/CIRC11

Not Quite Working
The included relays are

designed to be soldered rather

than used in a breadboard. As

such, you may need to press

it in to ensure it works.

Nothing Happens
The example code uses pin 13

and we have the relay connected

to pin 2. Make sure you made

this change in the code.

Arduino
pin 2

resistor
(2.2kohm)

gnd
(ground) (-)

Collector Emitter

Base

+5 volts

Transistor
P2N2222AG

co
ilcomNCNO Diode

(flyback)

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

CODE (no need to type everything in, just click)

560 Ohm Resistor
Green-Blue-Brown
x6

2 Pin Header
x4

CIRC-RGB
Breadboard Sheet
x1

Parts:

.:download:.
breadboard layout sheet

http://ardx.org/src/circ/
CIRC12-sheet-SOLA.png

The Internet

30

CIRC-12
.:Colorful Light:.

.:RGB LEDs:.

You can blink an LED, and use PWM to control motors.

Let’s use these techniques to create practically any colours

& intensities you want with an RGB LED.

The RGB LED actually has 3 LED elements inside it - Red, Green &

Blue. Let’s turn these on in combinations to get some brilliant colours out of a single LED!

So you can see what is going on, this circuit has an LED tied into each channel so you can

see exactly what the different signals are doing to the RGB LED.

WHAT WE’RE DOING:

Wire
5mm RGB LED
x1

Red LED
x3

resistors
(560ohm)

p
in

 1
1

p
in

 1
0

p
in

 9

co
m

m
o
n

 (g
n
d
)

re
d

g
re

e
n

b
lu

e

gnd

blue

green

red

flat
side

A
rd

u
in

o

green

gnd

RGB LED

gnd

gnd

indicator

blue

indicator

red

indicator

Schematic

THE CIRCUIT:

31

More details, where to buy more parts, where to ask more questions:

Seeing Red

The red diode within the RGB

LED may be a bit brighter

than the other two. To make

your colors more balanced,

try using a higher ohm

resistor (or two resistors in

series).

Too Many LEDs?
The indicator LEDs show the

signals being sent to the RGB

LED. Remove them when

you’ve figured out how each

channel mixes the light.

LED Remains Dark or

Shows Incorrect Color
With four close pins on the

RGB LED, one might be not in

the right spot. Don’t forget the

ground connections too!

http://www.solarbotics.com

CIRC-12

NOT WORKING? (3 things to try)

MAKING IT BETTER

MORE, MORE, MORE:

Download the Code from (http://ardx.org/CODE12R)
(copy the text and paste it into an empty Arduino Sketch)

More Colors
I imagine you are less than impressed by the

cyan glowing LED before you. To display a

different color change the color in the code to

one of the others.

 setColor(ledAnalogOne, CYAN); ---->
 setColor(ledAnalogOne, **NEW COLOR**);

Display a Random Color
Of course we can do more than display a

constant color, to see how we cycle through

random colors change the loop() code to.

void loop(){
 //setColor(ledAnalogOne, CYAN);
 randomColor()
}

Analog Color Control
While switching between colors is good fun RGB LEDs

really come into their own when mixed with analog

control. Using PWM (pulse width modulation) it’s

possible to produce nearly any color and fade

between them. Sadly the code for this is a bit too long

for the section above, for an example program (with

lots of comments).

Download the code from:
 http://bit.ly/PxDkmH

//RGB LED pins
int ledAnalogOne[] = {9, 10, 11};
 //the three digital pins of the digital LED
 //9 = redPin, 10 = greenPin, 11 = bluePin

const boolean ON = LOW;
 //Define on as LOW (this is because we use
 //a common Cathode RGB LED (common pin is
 //connected to Ground)
const boolean OFF = HIGH;
 //Define off as HIGH

//Predefined Colors
const boolean RED[] = {ON, OFF, OFF};
const boolean GREEN[] = {OFF, ON, OFF};
const boolean BLUE[] = {OFF, OFF, ON};
const boolean YELLOW[] = {ON, ON, OFF};
const boolean CYAN[] = {OFF, ON, ON};
const boolean MAGENTA[] = {ON, OFF, ON};
const boolean WHITE[] = {ON, ON, ON};
const boolean BLACK[] = {OFF, OFF, OFF};

//An Array that stores the predefined colors

const boolean* COLORS[] =
 {RED, GREEN, BLUE,YELLOW, CYAN, MAGENTA,
 WHITE, BLACK};

void setup(){
 for(int i = 0; i < 3; i++){
 pinMode(ledAnalogOne[i], OUTPUT);
 //Set the three LED pins as outputs
 }
}

void loop(){
 setColor(ledAnalogOne, CYAN);
 //Set the color of the LED

 //randomColor()

}

void randomColor(){
 int rand = random(0, sizeof(COLORS) / 2);
 //get a random number within the range of
 //colors
 setColor(ledAnalogOne, COLORS[rand]);
 //Set the color of led one to a random color
 delay(1000);
}

void setColor(int* led, boolean* color){
 for(int i = 0; i < 3; i++){
 digitalWrite(led[i], color[i]);
 }
}

CODE (no need to type everything in, just click)

32

.:Notes:.

33

This work is licenced under the Creative Commons Attribution-Share Alike 3.0 Unported License. To view a copy of this
licence, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California 94105, USA.

www.oomlout.com

ARDX
arduino

experimentation kit

www.solarbotics.com

Other products from Solarbotics:

SB-Freeduino

The Freeduino is based on the open source
project version of the Arduino Diecimila.
We've adapted the design for more
convenience as a semi-kit!

28920

KARDW

Servo

35238

Servo S03N

The GWS S03N servo is a good, solid
workhorse if you have a need for
inexpensive reliable servos.

Solarbotics Ardweeny

Looking to build the smallest, handiest,
breadboard friendly Arduino-compatible?
The Ardweeny fits on the back of the
included ATmega328P, taking up no more
valuable breadboard space than the
microcontroller itself!

Sharp Analog Distance

Sensor 10-80cm

The GP2Y0A21 Sharp distance sensor is a
great way to add obstacle avoidance or
motion sensing to your robot or any other
project.

